Difference between revisions of "Forest UCM Energy KEnWork"

From New IAC Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
: <math>T_2-T_1 = \sum \vec F_{\mbox{net}}  \cdot d\vec r = \int_1^2 \vec F_{\mbox{net}}  \cdot d\vec r</math> in the limit of dr approaching zero
 
: <math>T_2-T_1 = \sum \vec F_{\mbox{net}}  \cdot d\vec r = \int_1^2 \vec F_{\mbox{net}}  \cdot d\vec r</math> in the limit of dr approaching zero
  
remember
 
 
:<math>\vec F_{\mbox{net}} = \sum_{i=1}^n \vec {F}_i</math>
 
  
 
;Negative Work?
 
;Negative Work?
Line 48: Line 45:
  
 
And the kinetic energy decreases
 
And the kinetic energy decreases
 +
 +
 +
; also
 +
 +
remember
 +
 +
:<math>\vec F_{\mbox{net}} = \sum_{i=1}^n \vec {F}_i</math>
 +
 +
inserting this explicitly
 +
 +
: <math>T_2-T_1 =  \int_1^2 \sum_{i=1}^n \vec {F}_i \cdot d\vec r</math>
 +
  
 
===Problem 4.2===
 
===Problem 4.2===

Revision as of 03:04, 22 September 2014

Definition of KE

For a single particle of mass m moving with a velocity v, the kinetic energy is defined as

[math]T \equiv \frac{1}{2} mv^2[/math]

Work Energy Theorem

Derivation

Consider the Kinetic Energy's temporal rate of change assuming that the mass of the particle is constant

[math]\frac{dT}{dt} = \frac{m}{2} \frac{d}{dt}v^2= \frac{m}{2} \frac{d}{dt}\vec v \cdot \vec v[/math]
[math]= \frac{m}{2} \left (\vec \dot v \cdot \vec v + \vec v \cdot \vec \dot v \right )[/math]
[math]= \frac{m}{2} 2 \vec \dot v \cdot \vec v = \vec F_{\mbox{net}} \cdot \vec v[/math]

or

[math]dT = \vec F_{\mbox{net}} \cdot \vec v dt =\vec F_{\mbox{net}} \cdot d\vec r \equiv d W[/math]

or

[math]\Delta T = \Delta W[/math]
The change in a particle's kinetic energy is equivalent to the work done by the net Force used to move the particle

Line Integral

If we start with the form derived above

[math]dT =\vec F_{\mbox{net}} \cdot d\vec r[/math]

The change in the kinetic energy between two points and the corresponding work done as a result are

[math]T_2-T_1 = \sum \vec F_{\mbox{net}} \cdot d\vec r = \int_1^2 \vec F_{\mbox{net}} \cdot d\vec r[/math] in the limit of dr approaching zero


Negative Work?

Notice that if the Force is in the opposite direction of the displacement

Then negitive work is done

And the kinetic energy decreases


also

remember

[math]\vec F_{\mbox{net}} = \sum_{i=1}^n \vec {F}_i[/math]

inserting this explicitly

[math]T_2-T_1 = \int_1^2 \sum_{i=1}^n \vec {F}_i \cdot d\vec r[/math]


Problem 4.2

Forest_UCM_Energy#KE_.26_Work