Difference between revisions of "Forest UCM Ch3 AngMom"

From New IAC Wiki
Jump to navigation Jump to search
Line 4: Line 4:
  
 
: <math>\vec \ell = \vec r \times \vec p</math>
 
: <math>\vec \ell = \vec r \times \vec p</math>
 +
 +
 +
An coordinate must be defined in order to express the vectors for the particles position and momentum.  The resulting angular momentum is defined with respect to the origin (rotation point) of the particle.
  
 
==Torque==
 
==Torque==

Revision as of 12:48, 14 September 2014

Definition of Angular Momentum

The angular momentum of a single particle is defined as

[math]\vec \ell = \vec r \times \vec p[/math]


An coordinate must be defined in order to express the vectors for the particles position and momentum. The resulting angular momentum is defined with respect to the origin (rotation point) of the particle.

Torque

If I take the derivative of angular momentum with respect to time I get

[math]\vec{\dot \ell} = \frac{d}{dt} \left ( \vec r \times \vec p \right )[/math]
[math]= \left ( \vec \dot r \times \vec p \right ) + \left ( \vec r \times \vec \dot p \right )[/math]
[math] \left ( \vec \dot r \times \vec p \right )= \left ( \frac{1}{m} \vec p \times \vec p \right ) =0 [/math] cross product of parallel vectors
[math] \left ( \vec r \times \vec \dot p \right )=\left ( \vec r \times \vec F \right )= \vec \mathcal T[/math] Definition of Torque


[math]\vec \mathcal T =\vec{\dot \ell} [/math] Newton's second law for angular motion

Kepler's second Law

Forest_UCM_MnAM#Angular_Momentum