Difference between revisions of "Forest UCM PnCP QuadAirRes"
Jump to navigation
Jump to search
(One intermediate revision by the same user not shown) | |||
Line 13: | Line 13: | ||
:<math>mg -bv^2 = m v\frac{dv}{dy}</math> | :<math>mg -bv^2 = m v\frac{dv}{dy}</math> | ||
:<math>\int_{y_i}^{y_f} dy = \int_{v_i}^{v_f} m \frac{vdv}{\left ( mg -bv^2 \right ) }</math> | :<math>\int_{y_i}^{y_f} dy = \int_{v_i}^{v_f} m \frac{vdv}{\left ( mg -bv^2 \right ) }</math> | ||
− | :<math>y = \int_{v_i}^{v_f} \frac{ | + | :<math>y = \int_{v_i}^{v_f} \frac{vdv}{\left ( g -\frac{b}{m}v^2 \right ) }</math> |
Line 20: | Line 20: | ||
then <math>du = -2\frac{b}{m}v dv</math> | then <math>du = -2\frac{b}{m}v dv</math> | ||
− | :<math>y =\int_{v_i}^{v_f} \frac{-m}{2b} \frac{du}{u } = \frac{b}{m} \int_{v_f}^{v_i} \ln | + | :<math>y =\int_{v_i}^{v_f} \frac{-m}{2b} \frac{du}{u } = \frac{b}{m} \int_{v_f}^{v_i} \ln \left ( g -\frac{b}{m}v^2 \right ) =</math> |
:<math>y =\frac{m}{2b} \ln \left ( \frac {g -\frac{b}{m}v_i^2}{g -\frac{b}{m}v_f^2} \right ) </math> | :<math>y =\frac{m}{2b} \ln \left ( \frac {g -\frac{b}{m}v_i^2}{g -\frac{b}{m}v_f^2} \right ) </math> | ||
[[Forest_UCM_PnCP#quadratic_friction]] | [[Forest_UCM_PnCP#quadratic_friction]] |
Latest revision as of 11:54, 10 September 2014
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity squared
Find the fall distance
Here is a trick to convert the integral over time to one over distance so you don't need to integrate twice as inthe previous example
The integral becomes
let
then