Difference between revisions of "Forest UCM PnCP QuadAirRes"

From New IAC Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
:<math>mg -bv^2 = m v\frac{dv}{dy}</math>
 
:<math>mg -bv^2 = m v\frac{dv}{dy}</math>
 
:<math>\int_{y_i}^{y_f} dy  = \int_{v_i}^{v_f} m \frac{vdv}{\left ( mg -bv^2 \right ) }</math>
 
:<math>\int_{y_i}^{y_f} dy  = \int_{v_i}^{v_f} m \frac{vdv}{\left ( mg -bv^2 \right ) }</math>
:<math>y  = \int_{v_i}^{v_f} \frac{dv}{\left ( g -\frac{b}{m}v^2 \right ) }</math>
+
:<math>y  = \int_{v_i}^{v_f} \frac{vdv}{\left ( g -\frac{b}{m}v^2 \right ) }</math>
  
  

Revision as of 11:53, 10 September 2014

Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity squared

Fext=mgbv2=mdvdt

Find the fall distance

Here is a trick to convert the integral over time to one over distance so you don't need to integrate twice as inthe previous example

dvdt=dvdydydt=vdvdy

The integral becomes

mgbv2=mvdvdy
yfyidy=vfvimvdv(mgbv2)
y=vfvivdv(gbmv2)


let u=gbmv2

then du=2bmvdv

y=vfvim2bduu=bmvivflngbmv2=
y=m2bln(gbmv2igbmv2f)


Forest_UCM_PnCP#quadratic_friction