Difference between revisions of "Forest UCM PnCP LinAirRes"
Jump to navigation
Jump to search
(Created page with "; Horizontal motion If <math>n</math> is unity then the velocity is exponentially approaching zero. :<math>F(v) = -bv</math>: negative sign indicates a retarding force and <ma…") |
|||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | =Linear Air Resistance= | |
+ | |||
+ | ==Horizontal motion == | ||
If <math>n</math> is unity then the velocity is exponentially approaching zero. | If <math>n</math> is unity then the velocity is exponentially approaching zero. | ||
Line 18: | Line 20: | ||
:: <math>= v_i \left ( \frac{m}{b} e^{-\frac{b}{m}0} -\frac{m}{b} e^{-\frac{b}{m}t} \right ) </math> | :: <math>= v_i \left ( \frac{m}{b} e^{-\frac{b}{m}0} -\frac{m}{b} e^{-\frac{b}{m}t} \right ) </math> | ||
:: <math>= \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math> | :: <math>= \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math> | ||
+ | |||
+ | |||
+ | ==Example: falling object with linear air friction== | ||
+ | Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity | ||
+ | |||
+ | :<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math> | ||
+ | |||
+ | let | ||
+ | :<math>b=</math>coefficient of air resistance | ||
+ | :<math>v_t = \frac{mg}{b} =</math> Terminal speed | ||
+ | :<math> v_t -v = \frac{m}{b} \frac{dv}{dt}</math> | ||
+ | :<math> \frac{b}{m} dt= \frac{dv}{v_t -v} </math> | ||
+ | :<math> -\frac{b}{m} dt= \frac{dv}{v -v_t} </math> | ||
+ | :<math> -\int_0^t \frac{b}{m} dt= \int_{v_0}^v \frac{dv}{v -v_t} </math> | ||
+ | :<math> -\frac{b}{m}t = \ln{\left( v -v_t \right)} - \ln{\left ( v_0-v_t \right )}</math> | ||
+ | :<math> -\frac{b}{m}t = \ln \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | ||
+ | :<math> e^{-\frac{b}{m}t} = \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | ||
+ | :<math> v -v_t = \left ( v_0-v_t\right )e^{-\frac{b}{m}t}</math> | ||
+ | :<math> v = v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right )</math> | ||
+ | |||
+ | |||
+ | The posiiton as a function of time may be determined by directly integrating the above equation | ||
+ | |||
+ | :<math> \frac{dy}{dt} = v_0e^{-bt} + v_t \left (1 -e^{-\frac{b}{m}t}\right )</math> | ||
+ | :<math> \int_0^y = \int_0^t \left ( v_0e^{-\frac{b}{m}t} + v_t \left (1 -e^{-\frac{b}{m}t}\right ) \right ) dt</math> | ||
+ | :<math>y = \int_0^t v_0e^{-\frac{b}{m}t}dt + \int_0^t v_t \left (1 -e^{-b\frac{b}{m}t}\right ) dt</math> | ||
+ | ::<math>= \frac{v_0}{-\frac{b}{m}}\left ( e^{-\frac{b}{m}t}-e^{-b0} \right ) + v_t t + \frac{mv_t}{b}\left ( e^{-\frac{b}{m}t} - e^{-\frac{b}{m}0}\right ) </math> | ||
+ | ::<math>= \frac{v_0}{\frac{b}{m}}\left ( 1- e^{-\frac{b}{m}t} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - 1\right ) </math> | ||
+ | ::<math>= v_t t + \frac{m}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-\frac{b}{m}t} \right ) </math> | ||
+ | |||
+ | |||
+ | [[Forest_UCM_PnCP#Linear_Air_Resistance]] |
Latest revision as of 12:43, 1 September 2014
Linear Air Resistance
Horizontal motion
If
is unity then the velocity is exponentially approaching zero.- : negative sign indicates a retarding force and is a proportionality constant
- ;
The displacement is given by
Example: falling object with linear air friction
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity
let
- coefficient of air resistance
- Terminal speed
The posiiton as a function of time may be determined by directly integrating the above equation