Difference between revisions of "Forest UCM PnCP LinAirRes"
Jump to navigation
Jump to search
Line 46: | Line 46: | ||
:<math> \int_0^y = \int_0^t \left ( v_0e^{-bt} + v_t \left (1 -e^{-bt}\right ) \right ) dt</math> | :<math> \int_0^y = \int_0^t \left ( v_0e^{-bt} + v_t \left (1 -e^{-bt}\right ) \right ) dt</math> | ||
:<math>y = \int_0^t v_0e^{-bt}dt + \int_0^t v_t \left (1 -e^{-bt}\right ) dt</math> | :<math>y = \int_0^t v_0e^{-bt}dt + \int_0^t v_t \left (1 -e^{-bt}\right ) dt</math> | ||
− | ::<math>= \frac{v_0}{-b}\left ( e^{-bt}-e^{-b0} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - e^{-b0}\right ) | + | ::<math>= \frac{v_0}{-b}\left ( e^{-bt}-e^{-b0} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - e^{-b0}\right ) </math> |
− | ::<math>= \frac{v_0}{b}\left ( 1- e^{-bt} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - 1\right ) | + | ::<math>= \frac{v_0}{b}\left ( 1- e^{-bt} \right ) + v_t t + \frac{v_t}{b}\left ( e^{-bt} - 1\right ) </math> |
− | ::<math>= v_t t + \frac{1}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-bt} \right ) | + | ::<math>= v_t t + \frac{1}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-bt} \right ) </math> |
[[Forest_UCM_PnCP#Linear_Air_Resistance]] | [[Forest_UCM_PnCP#Linear_Air_Resistance]] |
Revision as of 12:17, 1 September 2014
Linear Air Resistance
Horizontal motion
If
is unity then the velocity is exponentially approaching zero.- : negative sign indicates a retarding force and is a proportionality constant
- ;
The displacement is given by
Example: falling object with linear air friction
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity
let
- coefficient of air resistance
- Terminal speed
The posiiton as a function of time may be determined by directly integrating the above equation