Difference between revisions of "Forest UCM NLM BlockOnInclineWfriction"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
+ | =the problem= | ||
+ | Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by | ||
+ | |||
+ | :<math>F_f = kmv^2</math> | ||
+ | |||
+ | |||
+ | [[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]] | ||
+ | |||
+ | Find the blocks speed as a function of time. | ||
+ | |||
+ | =Step 1: Identify the system= | ||
+ | |||
+ | :The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction. | ||
+ | |||
+ | =Step 2: Choose a suitable coordinate system= | ||
+ | |||
+ | : A coordinate system with one axis along the direction of motion may make solving the problem easier | ||
+ | |||
+ | =Step 3: Draw the Free Body Diagram= | ||
+ | |||
+ | [[File:TF_UCM_FBD_InclinedPlaneWfriction.png | 200 px]] | ||
+ | |||
+ | =Step 4: Define the Force vectors using the above coordinate system= | ||
+ | |||
+ | :<math>\vec{N} = \left | \vec{N} \right | \hat{j}</math> | ||
+ | :<math>\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )</math> | ||
+ | :<math>\vec{F_f} = - kmv^2 \hat{i}</math> | ||
+ | |||
+ | =Step 5: Used Newton's second law= | ||
+ | |||
+ | ==in the <math>\hat i</math> direction== | ||
+ | |||
+ | :<math>\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}</math> | ||
+ | : <math>\int_0^t dt = \int_0^v \frac{dv}{g\sin \theta - kv^2}</math> | ||
+ | |||
+ | Integral table <math>\Rightarrow</math> | ||
+ | |||
+ | ::<math>\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}</math> | ||
+ | |||
+ | |||
+ | : <math>a^2 = g \sin \theta</math> | ||
+ | : <math>b^2= -k</math> | ||
+ | |||
+ | :<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{-gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{-k}{g \sin \theta}} \; v \right )</math> | ||
+ | |||
+ | |||
+ | :: <math>i \equiv \sqrt{-1}</math> | ||
+ | |||
+ | :<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )</math> | ||
+ | |||
+ | ::<math>i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )</math> | ||
+ | |||
+ | |||
+ | Identities | ||
+ | |||
+ | ::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math> | ||
+ | ::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math> | ||
+ | :<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math> | ||
+ | |||
+ | :<math>t = \frac{1}{\sqrt{gk\sin \theta}} \tanh^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )</math> | ||
+ | |||
+ | Solving for <math>v</math> | ||
+ | |||
+ | : v = \tan \left ( \sqrt{gk\sin \theta} i t \right ) | ||
+ | ::= | ||
+ | |||
+ | [[Forest_UCM_NLM#Block_on_incline_with_friction]] | ||
[[Forest_UCM_NLM#Block_on_incline_with_friction]] | [[Forest_UCM_NLM#Block_on_incline_with_friction]] |
Revision as of 20:14, 20 August 2014
the problem
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by
Find the blocks speed as a function of time.
Step 1: Identify the system
- The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
Step 2: Choose a suitable coordinate system
- A coordinate system with one axis along the direction of motion may make solving the problem easier
Step 3: Draw the Free Body Diagram
Step 4: Define the Force vectors using the above coordinate system
Step 5: Used Newton's second law
in the direction
Integral table
Identities
Solving for
- v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
- =
Forest_UCM_NLM#Block_on_incline_with_friction