Difference between revisions of "Forest UCM NLM BlockOnIncline"
Jump to navigation
Jump to search
Line 57: | Line 57: | ||
::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math> | ::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math> | ||
::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math> | ::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math> | ||
− | :<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\ | + | :<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math> |
:<math>t = \frac{1}{\sqrt{gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )</math> | :<math>t = \frac{1}{\sqrt{gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )</math> |
Revision as of 03:38, 20 August 2014
the problem
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by
Find the blocks speed as a function of time.
Step 1: Identify the system
- The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
Step 2: Choose a suitable coordinate system
- A coordinate system with one axis along the direction of motion may make solving the problem easier
Step 3: Draw the Free Body Diagram
Step 4: Define the Force vectors using the above coordinate system
Step 5: Used Newton's second law
in the direction
Integral table
Identities
Solving for
- v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
- =