Difference between revisions of "Solution details"
Jump to navigation
Jump to search
Line 16: | Line 16: | ||
<math> \nabla'^2 V = \lambda_L^2 V </math> | <math> \nabla'^2 V = \lambda_L^2 V </math> | ||
+ | |||
+ | where | ||
+ | <math> \nabla'^2 V = \frac {\partial^2{}}{\partial{x'^2}} + \frac {\partial^2{}}{\partial{y'^2}} + \frac {\partial^2{}}{\partial{z^2}}</math> | ||
− | <math> \ | + | and |
+ | |||
+ | <math> x' = \frac {D_L}{D} x </math> | ||
+ | <math> y' = \frac {D_L}{D} y </math> | ||
+ | |||
+ | In spherical coordinates: | ||
+ | |||
+ | <math> \frac {1}{r^'^2} \frac{\partial{}}{\partial{r'}}r'^2 \frac{\partial{V}}{\partial{r'} + \frac {1}{r^'sin\theta'} \frac{\partial{}}{\partial{\theta'} sin\theta'\frac{\partial{V}}{\partial{\theta'} = \lambda_L^2 V </math> |
Revision as of 18:15, 25 October 2013
asymptotic solution details for Boltzmann equation for a hole has a uniform electric field
n + - n = 0
Steps to solve Boltzmann equation
for the previous equation let consider the asymptotic solution has the form:
so
where
and
In spherical coordinates: