Difference between revisions of "Simulations of Particle Interactions with Matter"
Jump to navigation
Jump to search
Line 36: | Line 36: | ||
<math>\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1 eV/kT} - e^{4.9 eV/kT}]</math> | <math>\int_{4.9 eV}^{5.1 eV} P(E) dE = - [e^{-5.1 eV/kT} - e^{4.9 eV/kT}]</math> | ||
− | <math>kT = (1.38 \times 10^{-23} \frac{J}{mole \cdot K} ) T</math> | + | <math>kT = (1.38 \times 10^{-23} \frac{J}{mole \cdot K} ) T = (1.38 \times 10^{-23} \frac{J}{mole \cdot K} )(6.42 \times 10^{18} \frac{ev}{J})T</math> |
=== The Monte Carlo method === | === The Monte Carlo method === |
Revision as of 15:57, 31 August 2007
Overview
Particle Detection
A device detects a particle only after the particle transfers energy to the device.
Energy intrinsic to a device depends on the material used in a device
Some device of material with an average atomic number (
) is at some temperature ( ). The materials atoms are in constant thermal motion (unless T = zero degrees Klevin).Statistical Thermodynamics tells us that the canonical energy distribution of the atoms is given by the Maxwell-Boltzmann statistics such that
represents the probability of any atom in the system having an energy where
Note: You may be more familiar with the Maxwell-Boltzmann distribution in the form
where
would represent the molesules in the gas sample with speeds between andExample 1
What is the probability that an atom in a 12.011 gram block of carbon would have and energy of 5 eV?
First lets check that the probability distribution is Normailized; ie: does
?
is calculated by integrating P(E) over some energy interval ( ie: ). I will arbitrarily choose 4.9 eV to 5.1 eV as a starting point.