|
|
Line 37: |
Line 37: |
| | | |
| | | |
− | | + | The analogous expressions for the case of a Deuteron target are |
| | | |
| | | |
| {| border="0" style="background:transparent;" align="center" | | {| border="0" style="background:transparent;" align="center" |
| + | |- |
| + | |<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> |
| |- | | |- |
| |<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | | |<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> |
Line 46: |
Line 48: |
| and unpolarized:<br> | | and unpolarized:<br> |
| <br> | | <br> |
− |
| |
− |
| |
− | {| border="0" style="background:transparent;" align="center"
| |
− | |-
| |
− | |<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math>
| |
− | |}
| |
− |
| |
− | The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br>
| |
| | | |
| | | |
Revision as of 18:26, 12 November 2012
[math]\frac{\Delta d_v}{d_v} = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} [/math]
|
The charged pion semi inclusive pion electro-production cross section, represented as a sum of the [math]\pi^+[/math] and [math]\pi^-[/math] cross sections, using proton or neutron targets can be written, using Eq. 9 & 10 from Ref.<ref name="Christova9907265"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>, as:
[math]\sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4( u + \bar{u}) + ( d + \bar{d})]D_u^{\pi^+ + \pi^-}[/math]
|
[math]\sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(d + \bar{d}) + (u + \bar{u})]D_u^{\pi^+ + \pi^-}[/math]
|
The polarized cross section difference is defined as :
[math]\Delta \sigma = \sigma_{\uparrow \downarrow} - \sigma_{\uparrow \uparrow}[/math]
|
using the polarized cross section [math](\sigma_{\alpha \beta})[/math] where [math]\alpha[/math] refers to the lepton helicity and [math]\beta[/math] to the target helicity.
The charged pion helicity difference [math](\Delta \sigma_p^{\pi^+ + \pi^-})[/math] can be written using equations 6 and 7 from Reference <ref name="Christova9907265"> </ref> as
[math]\Delta \sigma_p^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})]D_u^{\pi^+ + \pi^-}[/math]
|
[math]\Delta \sigma_n^{\pi^+ + \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) + (\Delta u + \Delta u^-)]D_u^{\pi^+ + \pi^-}[/math]
|
The analogous expressions for the case of a Deuteron target are
[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
and unpolarized:
[math]A_{1,p}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_p^{\pi^+ \pm \pi^-}}{\sigma_p^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_p}^{\pi^+})_{1/2}-({\sigma_p}^{\pi^+})_{3/2}] \pm [({\sigma_p}^{\pi^-})_{1/2}-({\sigma_p}^{\pi^-})_{3/2}]}{[({\sigma_p}^{\pi^+})_{1/2}+({\sigma_p}^{\pi^+})_{3/2}] \pm [({\sigma_p}^{\pi^-})_{1/2}+({\sigma_p}^{\pi^-})_{3/2}]}[/math]
|
[math]A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta \sigma_{2H}^{\pi^+ \pm \pi^-}}{\sigma_{2H}^{\pi^+ \pm \pi^-}} = \frac{[({\sigma_{2H}}^{\pi^+})_{1/2}-({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}-({\sigma_{2H}}^{\pi^-})_{3/2}]}{[({\sigma_{2H}}^{\pi^+})_{1/2}+({\sigma_{2H}}^{\pi^+})_{3/2}] \pm [({\sigma_{2H}}^{\pi^-})_{1/2}+({\sigma_{2H}}^{\pi^-})_{3/2}]}[/math]
|
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin ([math]D_u^{\pi^+} = D_{\overline{u}}^{\pi^-}[/math] and [math]D_d^{\pi^-} = D_{\overline{d}}^{\pi^+}[/math] ) and charge ([math]D_u^{\pi^+} = D_d^{\pi^-}[/math]) conjugation invariance for the fragmentation functions, the following equality holds:
[math]D_u^{\pi^+ \pm \pi^-} = D_u^{\pi^+} \pm D_u^{\pi^-} = D_d^{\pi^+ \pm \pi^-}[/math]
|
The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:
[math]\Delta \sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
[math]\Delta \sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) \pm (\Delta u + \Delta u^-)]D_u^{\pi^+ \pm \pi^-}[/math]
|
[math]\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
and unpolarized:
[math]\sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
[math]\sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(d + \bar{d}) \pm (u + \bar{u})]D_u^{\pi^+ \pm \pi^-}[/math]
|
[math]\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}[/math]
|
In the valence region ([math]x_{B}\gt 0.3[/math]), where the sea quark contribution is minimized, the above asymmetries can be expressed in terms of polarized and unpolarized valence quark distributions:
[math]A_{1,p}^{\pi^+ \pm \pi^-} = \frac{4 \Delta u_v(x) \pm \Delta d_v(x)}{4u_v(x) \pm d_v(x)}[/math]
|
[math]A_{1,2H}^{\pi^+ \pm \pi^-} = \frac{\Delta u_v(x) + \Delta d_v(x)}{u_v(x) + d_v(x)}[/math]
|
The ratio of polarized to unpolarized valence up and down quark distributions may then be written as
[math]\frac{\Delta u_v}{u_v}(x,Q^2) = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} + \Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} + \sigma_{2H}^{\pi^+ - \pi^-}} (x,Q^2)[/math]
|
and
[math]\frac{\Delta d_v}{d_v}(x,Q^2) = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} (x,Q^2)[/math]
|
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.
Christova_Leader_ hep-ph-9907265.pdf
References
<references/>