Difference between revisions of "Kiwi Dipole Mappings"
| Line 1,351: | Line 1,351: | ||
| === Estimation for En vs I === | === Estimation for En vs I === | ||
| − | + | 	Current (A)	Energy (MeV) | |
| − |             	0.1	0. | + |             	0.1	0.080 | 
| − |             	0.2	0. | + |             	0.2	0.147 | 
| − |             	0.3	0. | + |             	0.3	0.213 | 
| − |             	0.4	0. | + |             	0.4	0.279 | 
| − |             	0.5	0. | + |             	0.5	0.345 | 
| − |             	0.6	0. | + |             	0.6	0.411 | 
| − |             	0.7	0. | + |             	0.7	0.477 | 
| − |             	0.8	0. | + |             	0.8	0.543 | 
| − |             	0.9	0. | + |             	0.9	0.608 | 
| − |             	1	0. | + |             	1	0.674 | 
| − |             	1.1	0. | + |             	1.1	0.739 | 
| − |             	1.2	0. | + |             	1.2	0.805 | 
| − |             	1.3	0. | + |             	1.3	0.870 | 
| − |             	1.4	0. | + |             	1.4	0.935 | 
| − |             	1.5	1 | + |             	1.5	1.000 | 
| − |             	1.6	1. | + |             	1.6	1.065 | 
| − |             	1.7	1. | + |             	1.7	1.130 | 
| − |             	1.8	1. | + |             	1.8	1.194 | 
| − |             	1.9	1. | + |             	1.9	1.259 | 
| − |             	2	1. | + |             	2	1.323 | 
| − |             	2.1	1. | + |             	2.1	1.388 | 
| − |             	2.2	1. | + |             	2.2	1.452 | 
| − |             	2.3	1. | + |             	2.3	1.516 | 
| − |             	2.4	1. | + |             	2.4	1.580 | 
| − |             	2.5	1. | + |             	2.5	1.644 | 
| − |             	2.6	1. | + |             	2.6	1.708 | 
| − |             	2.7	1. | + |             	2.7	1.772 | 
| − |             	2.8	1. | + |             	2.8	1.836 | 
| − |             	2.9	1. | + |             	2.9	1.899 | 
| − |             	3	1. | + |             	3	1.963 | 
| − |             	3.1	2. | + |             	3.1	2.026 | 
| − |             	3.2	2. | + |             	3.2	2.089 | 
| − |             	3.3	2. | + |             	3.3	2.153 | 
| − |             	3.4	2. | + |             	3.4	2.216 | 
| − |             	3.5	2. | + |             	3.5	2.279 | 
| − |             	3.6	2. | + |             	3.6	2.341 | 
| − |             	3.7	2. | + |             	3.7	2.404 | 
| − |             	3.8	2. | + |             	3.8	2.467 | 
| − |             	3.9	2. | + |             	3.9	2.529 | 
| − |             	4	2. | + |             	4	2.592 | 
| − |             	4.1	2. | + |             	4.1	2.654 | 
| − |             	4.2	2. | + |             	4.2	2.716 | 
| − |             	4.3	2. | + |             	4.3	2.778 | 
| − |             	4.4	2. | + |             	4.4	2.840 | 
| − |             	4.5	2. | + |             	4.5	2.902 | 
| − |             	4.6	2. | + |             	4.6	2.964 | 
| − |             	4.7	3. | + |             	4.7	3.026 | 
| − |             	4.8	3. | + |             	4.8	3.088 | 
| − |             	4.9	3. | + |             	4.9	3.149 | 
| − |             	5	3. | + |             	5	3.211 | 
| − |             	5.1	3. | + |             	5.1	3.272 | 
| − |             	5.2	3. | + |             	5.2	3.333 | 
| − |             	5.3	3. | + |             	5.3	3.394 | 
| − |             	5.4	3. | + |             	5.4	3.455 | 
| − |             	5.5	3. | + |             	5.5	3.516 | 
| − |             	5.6	3. | + |             	5.6	3.577 | 
| − |             	5.7	3. | + |             	5.7	3.638 | 
| − |             	5.8	3. | + |             	5.8	3.698 | 
| − |             	5.9	3. | + |             	5.9	3.759 | 
| − |             	6	3. | + |             	6	3.819 | 
| − |             	6.1	3. | + |             	6.1	3.879 | 
| − |             	6.2	3. | + |             	6.2	3.939 | 
| − |             	6.3	 | + |             	6.3	3.999 | 
| − |             	6.4	4. | + |             	6.4	4.059 | 
| − |             	6.5	4. | + |             	6.5	4.119 | 
| − |             	6.6	4. | + |             	6.6	4.179 | 
| − |             	6.7	4. | + |             	6.7	4.239 | 
| − |             	6.8	4. | + |             	6.8	4.298 | 
| − |             	6.9	4. | + |             	6.9	4.358 | 
| − |             	7	4. | + |             	7	4.417 | 
| − |             	7.1	4. | + |             	7.1	4.476 | 
| − |             	7.2	4. | + |             	7.2	4.536 | 
| − |             	7.3	4. | + |             	7.3	4.595 | 
| − |             	7.4	4. | + |             	7.4	4.654 | 
| − |             	7.5	4. | + |             	7.5	4.712 | 
| − |             	7.6	4. | + |             	7.6	4.771 | 
| − |             	7.7	4. | + |             	7.7	4.830 | 
| − |             	7.8	4. | + |             	7.8	4.888 | 
| − |             	7.9	4. | + |             	7.9	4.947 | 
| − |             	8	5. | + |             	8	5.005 | 
| − |             	8.1	5. | + |             	8.1	5.063 | 
| − |             	8.2	5. | + |             	8.2	5.121 | 
| − |             	8.3	5. | + |             	8.3	5.179 | 
| − |             	8.4	5. | + |             	8.4	5.237 | 
| − |             	8.5	5. | + |             	8.5	5.295 | 
| − |             	8.6	5. | + |             	8.6	5.353 | 
| − |             	8.7	5. | + |             	8.7	5.410 | 
| − |             	8.8	5. | + |             	8.8	5.468 | 
| − |             	8.9	5. | + |             	8.9	5.525 | 
| − |             	9	5. | + |             	9	5.583 | 
| − |             	9.1	5. | + |             	9.1	5.640 | 
| − |             	9.2	5. | + |             	9.2	5.697 | 
| − |             	9.3	5. | + |             	9.3	5.754 | 
| − |             	9.4	5. | + |             	9.4	5.811 | 
| − |             	9.5	5. | + |             	9.5	5.868 | 
| − |             	9.6	5. | + |             	9.6	5.924 | 
| − |             	9.7	5. | + |             	9.7	5.981 | 
| − |             	9.8	6. | + |             	9.8	6.037 | 
| − |             	9.9	6. | + |             	9.9	6.094 | 
| − |             	10	6. | + |             	10	6.150 | 
| − |             	10.1	6. | + |             	10.1	6.206 | 
| − |             	10.2	6. | + |             	10.2	6.262 | 
| − |             	10.3	6. | + |             	10.3	6.318 | 
| − |             	10.4	6. | + |             	10.4	6.374 | 
| − |             	10.5	6. | + |             	10.5	6.430 | 
| − |             	10.6	6. | + |             	10.6	6.485 | 
| − |             	10.7	6. | + |             	10.7	6.541 | 
| − |             	10.8	6. | + |             	10.8	6.596 | 
| − |             	10.9	6. | + |             	10.9	6.652 | 
| − |             	11	6. | + |             	11	6.707 | 
| − |             	11.1	6. | + |             	11.1	6.762 | 
| − |             	11.2	6. | + |             	11.2	6.817 | 
| − |             	11.3	6. | + |             	11.3	6.872 | 
| − |             	11.4	6. | + |             	11.4	6.927 | 
| − |             	11.5	6. | + |             	11.5	6.982 | 
| − |             	11.6	7. | + |             	11.6	7.036 | 
| − |             	11.7	7. | + |             	11.7	7.091 | 
| − |             	11.8	7. | + |             	11.8	7.145 | 
| − |             	11.9	7. | + |             	11.9	7.200 | 
| − |             	12	7. | + |             	12	7.254 | 
| − |             	12.1	7. | + |             	12.1	7.308 | 
| − |             	12.2	7. | + |             	12.2	7.362 | 
| − |             	12.3	7. | + |             	12.3	7.416 | 
| − |             	12.4	7. | + |             	12.4	7.470 | 
| − |             	12.5	7. | + |             	12.5	7.523 | 
| − |             	12.6	7. | + |             	12.6	7.577 | 
| − |             	12.7	7. | + |             	12.7	7.630 | 
| − |             	12.8	7. | + |             	12.8	7.684 | 
| − |             	12.9	7. | + |             	12.9	7.737 | 
| − |             	13	7. | + |             	13	7.790 | 
| − |             	13.1	7. | + |             	13.1	7.843 | 
| − |             	13.2	7. | + |             	13.2	7.896 | 
| − |             	13.3	7. | + |             	13.3	7.949 | 
| − |             	13.4	8 | + |             	13.4	8.002 | 
| − |             	13.5	8. | + |             	13.5	8.055 | 
| − |             	13.6	8. | + |             	13.6	8.107 | 
| − |             	13.7	8. | + |             	13.7	8.160 | 
| − |             	13.8	8. | + |             	13.8	8.212 | 
| − |             	13.9	8. | + |             	13.9	8.264 | 
| − |             	14	8. | + |             	14	8.317 | 
| − |             	14.1	8. | + |             	14.1	8.369 | 
| − |             	14.2	8. | + |             	14.2	8.421 | 
| − |             	14.3	8. | + |             	14.3	8.472 | 
| − |             	14.4	8. | + |             	14.4	8.524 | 
| − |             	14.5	8. | + |             	14.5	8.576 | 
| − |             	14.6	8. | + |             	14.6	8.627 | 
| − |             	14.7	8. | + |             	14.7	8.679 | 
| − |             	14.8	8. | + |             	14.8	8.730 | 
| − |             	14.9	8. | + |             	14.9	8.781 | 
| − |             	15	8. | + |             	15	8.833 | 
| − |             	15.1	8. | + |             	15.1	8.884 | 
| − |             	15.2	8. | + |             	15.2	8.934 | 
| − |             	15.3	8. | + |             	15.3	8.985 | 
| − |             	15.4	9. | + |             	15.4	9.036 | 
| − |             	15.5	9. | + |             	15.5	9.087 | 
| − |             	15.6	9. | + |             	15.6	9.137 | 
| − |             	15.7	9. | + |             	15.7	9.188 | 
| − |             	15.8	9. | + |             	15.8	9.238 | 
| − |             	15.9	9. | + |             	15.9	9.288 | 
| − |             	16	9. | + |             	16	9.338 | 
| − |             	16.1	9. | + |             	16.1	9.388 | 
| − |             	16.2	9. | + |             	16.2	9.438 | 
| − |             	16.3	9. | + |             	16.3	9.488 | 
| − |             	16.4	9. | + |             	16.4	9.538 | 
| − |             	16.5	9. | + |             	16.5	9.587 | 
| − |             	16.6	9. | + |             	16.6	9.637 | 
| − |             	16.7	9. | + |             	16.7	9.686 | 
| − |             	16.8	9. | + |             	16.8	9.735 | 
| − |             	16.9	9. | + |             	16.9	9.784 | 
| − |             	17	9. | + |             	17	9.834 | 
| − |             	17.1	9. | + |             	17.1	9.883 | 
| − |             	17.2	9. | + |             	17.2	9.931 | 
| − |             	17.3	9. | + |             	17.3	9.980 | 
| − |             	17.4	10. | + |             	17.4	10.029 | 
| − |             	17.5	10. | + |             	17.5	10.077 | 
| − |             	17.6	10. | + |             	17.6	10.126 | 
| − |             	17.7	10. | + |             	17.7	10.174 | 
| − |             	17.8	10. | + |             	17.8	10.222 | 
| − |             	17.9	10. | + |             	17.9	10.271 | 
| − |             	18	10. | + |             	18	10.319 | 
| − |             	18.1	10. | + |             	18.1	10.367 | 
| − |             	18.2	10. | + |             	18.2	10.414 | 
| − |             	18.3	10. | + |             	18.3	10.462 | 
| − |             	18.4	10. | + |             	18.4	10.510 | 
| − |             	18.5	10. | + |             	18.5	10.557 | 
| − |             	18.6	10. | + |             	18.6	10.605 | 
| − |             	18.7	10. | + |             	18.7	10.652 | 
| − |             	18.8	10. | + |             	18.8	10.699 | 
| − |             	18.9	10. | + |             	18.9	10.746 | 
| − |             	19	10. | + |             	19	10.793 | 
| − |             	19.1	10. | + |             	19.1	10.840 | 
| − |             	19.2	10. | + |             	19.2	10.887 | 
| − |             	19.3	10. | + |             	19.3	10.934 | 
| − |             	19.4	10. | + |             	19.4	10.981 | 
| − |             	19.5	11. | + |             	19.5	11.027 | 
| − |             	19.6	11. | + |             	19.6	11.073 | 
| − |             	19.7	11. | + |             	19.7	11.120 | 
| − |             	19.8	11. | + |             	19.8	11.166 | 
| − |             	19.9	11. | + |             	19.9	11.212 | 
| − |             	20	11. | + |             	20	11.258 | 
| − |             	20.1	11. | + |             	20.1	11.304 | 
| − |             	20.2	11. | + |             	20.2	11.350 | 
| − |             	20.3	11. | + |             	20.3	11.395 | 
| − |             	20.4	11. | + |             	20.4	11.441 | 
| − |             	20.5	11. | + |             	20.5	11.486 | 
| − |             	20.6	11. | + |             	20.6	11.532 | 
| − |             	20.7	11. | + |             	20.7	11.577 | 
| − |             	20.8	11. | + |             	20.8	11.622 | 
| − |             	20.9	11. | + |             	20.9	11.667 | 
| − |             	21	11. | + |             	21	11.712 | 
| − |             	21.1	11. | + |             	21.1	11.757 | 
| − |             	21.2	11. | + |             	21.2	11.802 | 
| − |             	21.3	11. | + |             	21.3	11.847 | 
| − |             	21.4	11. | + |             	21.4	11.891 | 
| − |             	21.5	11. | + |             	21.5	11.936 | 
| − |             	21.6	11. | + |             	21.6	11.980 | 
| − |             	21.7	12. | + |             	21.7	12.024 | 
| − |             	21.8	12. | + |             	21.8	12.068 | 
| − |             	21.9	12. | + |             	21.9	12.112 | 
| − |             	22	12. | + |             	22	12.156 | 
| − |             	22.1	12. | + |             	22.1	12.200 | 
| − |             	22.2	12. | + |             	22.2	12.244 | 
| − |             	22.3	12. | + |             	22.3	12.287 | 
| − |             	22.4	12. | + |             	22.4	12.331 | 
| − |             	22.5	12. | + |             	22.5	12.374 | 
| − |             	22.6	12. | + |             	22.6	12.418 | 
| − |             	22.7	12. | + |             	22.7	12.461 | 
| − |             	22.8	12. | + |             	22.8	12.504 | 
| − |             	22.9	12. | + |             	22.9	12.547 | 
| − |             	23	12. | + |             	23	12.590 | 
| − |             	23.1	12. | + |             	23.1	12.633 | 
| − |             	23.2	12. | + |             	23.2	12.675 | 
| − |             	23.3	12. | + |             	23.3	12.718 | 
| − |             	23.4	12. | + |             	23.4	12.761 | 
| − |             	23.5	12. | + |             	23.5	12.803 | 
| − |             	23.6	12. | + |             	23.6	12.845 | 
| − |             	23.7	12. | + |             	23.7	12.887 | 
| − |             	23.8	12. | + |             	23.8	12.929 | 
| − |             	23.9	12. | + |             	23.9	12.971 | 
| − |             	24	13. | + |             	24	13.013 | 
| − |             	24.1	13. | + |             	24.1	13.055 | 
| − |             	24.2	13. | + |             	24.2	13.097 | 
| − |             	24.3	13. | + |             	24.3	13.138 | 
| − |             	24.4	13. | + |             	24.4	13.180 | 
| − |             	24.5	13. | + |             	24.5	13.221 | 
| − |             	24.6	13. | + |             	24.6	13.262 | 
| − |             	24.7	13. | + |             	24.7	13.304 | 
| − |             	24.8	13. | + |             	24.8	13.345 | 
| − |             	24.9	13. | + |             	24.9	13.386 | 
| − |             	25	13. | + |             	25	13.427 | 
| − |             	25.1	13. | + |             	25.1	13.467 | 
| − |             	25.2	13. | + |             	25.2	13.508 | 
| − |             	25.3	13. | + |             	25.3	13.548 | 
| − |             	25.4	13. | + |             	25.4	13.589 | 
| − |             	25.5	13. | + |             	25.5	13.629 | 
| − |             	25.6	13. | + |             	25.6	13.669 | 
| − |             	25.7	13. | + |             	25.7	13.710 | 
| − |             	25.8	13. | + |             	25.8	13.750 | 
| − |             	25.9	13. | + |             	25.9	13.790 | 
| − |             	26	13. | + |             	26	13.829 | 
| − |             	26.1	13. | + |             	26.1	13.869 | 
| − |             	26.2	13. | + |             	26.2	13.909 | 
| − |             	26.3	13. | + |             	26.3	13.948 | 
| − |             	26.4	13. | + |             	26.4	13.988 | 
| − |             	26.5	14. | + |             	26.5	14.027 | 
| − |             	26.6	14. | + |             	26.6	14.066 | 
| − |             	26.7	14. | + |             	26.7	14.105 | 
| − |             	26.8	14. | + |             	26.8	14.144 | 
| − |             	26.9	14. | + |             	26.9	14.183 | 
| − |             	27	14. | + |             	27	14.222 | 
| − |             	27.1	14. | + |             	27.1	14.261 | 
| − |             	27.2	14. | + |             	27.2	14.299 | 
| − |             	27.3	14. | + |             	27.3	14.338 | 
| − |             	27.4	14. | + |             	27.4	14.376 | 
| − |             	27.5	14. | + |             	27.5	14.414 | 
| − |             	27.6	14. | + |             	27.6	14.453 | 
| − |             	27.7	14. | + |             	27.7	14.491 | 
| − |             	27.8	14. | + |             	27.8	14.529 | 
| − |             	27.9	14. | + |             	27.9	14.566 | 
| − |             	28	14. | + |             	28	14.604 | 
| − |             	28.1	14. | + |             	28.1	14.642 | 
| − |             	28.2	14. | + |             	28.2	14.679 | 
| − |             	28.3	14. | + |             	28.3	14.717 | 
| − |             	28.4	14. | + |             	28.4	14.754 | 
| − |             	28.5	14. | + |             	28.5	14.792 | 
| − |             	28.6	14. | + |             	28.6	14.829 | 
| − |             	28.7	14. | + |             	28.7	14.866 | 
| − |             	28.8	14. | + |             	28.8	14.903 | 
| − |             	28.9	14. | + |             	28.9	14.940 | 
| − |             	29	14. | + |             	29	14.976 | 
| − |             	29.1	15. | + |             	29.1	15.013 | 
| − |             	29.2	15. | + |             	29.2	15.049 | 
| − |             	29.3	15. | + |             	29.3	15.086 | 
| − |             	29.4	15. | + |             	29.4	15.122 | 
| − |             	29.5	15. | + |             	29.5	15.158 | 
| − |             	29.6	15. | + |             	29.6	15.195 | 
| − |             	29.7	15. | + |             	29.7	15.231 | 
| − |             	29.8	15. | + |             	29.8	15.266 | 
| − |             	29.9	15. | + |             	29.9	15.302 | 
| − |             	30	15. | + |             	30	15.338 | 
| − |             	30.1	15. | + |             	30.1	15.374 | 
| − |             	30.2	15. | + |             	30.2	15.409 | 
| − |             	30.3	15. | + |             	30.3	15.445 | 
| − |             	30.4	15. | + |             	30.4	15.480 | 
| − |             	30.5	15. | + |             	30.5	15.515 | 
| − |             	30.6	15. | + |             	30.6	15.550 | 
| − |             	30.7	15. | + |             	30.7	15.585 | 
| − |             	30.8	15. | + |             	30.8	15.620 | 
| − |             	30.9	15. | + |             	30.9	15.655 | 
| − |             	31	15. | + |             	31	15.689 | 
| − |             	31.1	15. | + |             	31.1	15.724 | 
| − |             	31.2	15. | + |             	31.2	15.759 | 
| − |             	31.3	15. | + |             	31.3	15.793 | 
| − |             	31.4	15. | + |             	31.4	15.827 | 
| − |             	31.5	15. | + |             	31.5	15.861 | 
| − |             	31.6	15. | + |             	31.6	15.895 | 
| − |             	31.7	15. | + |             	31.7	15.929 | 
| − |             	31.8	15. | + |             	31.8	15.963 | 
| − |             	31.9	 | + |             	31.9	15.997 | 
| − |             	32	16. | + |             	32	16.031 | 
| − |             	32.1	16. | + |             	32.1	16.064 | 
| − |             	32.2	16. | + |             	32.2	16.098 | 
| − |             	32.3	16. | + |             	32.3	16.131 | 
| − |             	32.4	16. | + |             	32.4	16.164 | 
| − |             	32.5	16. | + |             	32.5	16.197 | 
| − |             	32.6	16. | + |             	32.6	16.230 | 
| − |             	32.7	16. | + |             	32.7	16.263 | 
| − |             	32.8	16. | + |             	32.8	16.296 | 
| − |             	32.9	16. | + |             	32.9	16.329 | 
| − |             	33	16. | + |             	33	16.362 | 
| − |             	33.1	16. | + |             	33.1	16.394 | 
| − |             	33.2	16. | + |             	33.2	16.426 | 
| − |             	33.3	16. | + |             	33.3	16.459 | 
| − |             	33.4	16. | + |             	33.4	16.491 | 
| − |             	33.5	16. | + |             	33.5	16.523 | 
| − |             	33.6	16. | + |             	33.6	16.555 | 
| − |             	33.7	16. | + |             	33.7	16.587 | 
| − |             	33.8	16. | + |             	33.8	16.619 | 
| − |             	33.9	16. | + |             	33.9	16.651 | 
| − |             	34	16. | + |             	34	16.682 | 
| − |             	34.1	16. | + |             	34.1	16.714 | 
| − |             	34.2	16. | + |             	34.2	16.745 | 
| − |             	34.3	16. | + |             	34.3	16.776 | 
| − |             	34.4	16. | + |             	34.4	16.808 | 
| − |             	34.5	16. | + |             	34.5	16.839 | 
| − |             	34.6	16. | + |             	34.6	16.870 | 
| − |             	34.7	16. | + |             	34.7	16.900 | 
| − |             	34.8	16. | + |             	34.8	16.931 | 
| − |             	34.9	16. | + |             	34.9	16.962 | 
| − |             	35	16. | + |             	35	16.993 | 
| − |             	35.1	17. | + |             	35.1	17.023 | 
| − |             	35.2	17. | + |             	35.2	17.053 | 
| − |             	35.3	17. | + |             	35.3	17.084 | 
| − |             	35.4	17. | + |             	35.4	17.114 | 
| − |             	35.5	17. | + |             	35.5	17.144 | 
| − |             	35.6	17. | + |             	35.6	17.174 | 
| − |             	35.7	17. | + |             	35.7	17.204 | 
| − |             	35.8	17. | + |             	35.8	17.233 | 
| − |             	35.9	17. | + |             	35.9	17.263 | 
| − |             	36	17. | + |             	36	17.293 | 
| − |             	36.1	17. | + |             	36.1	17.322 | 
| − |             	36.2	17. | + |             	36.2	17.351 | 
| − |             	36.3	17. | + |             	36.3	17.381 | 
| − |             	36.4	17. | + |             	36.4	17.410 | 
| − |             	36.5	17. | + |             	36.5	17.439 | 
| − |             	36.6	17. | + |             	36.6	17.468 | 
| − |             	36.7	17. | + |             	36.7	17.496 | 
| − |             	36.8	17. | + |             	36.8	17.525 | 
| − |             	36.9	17. | + |             	36.9	17.554 | 
| − |             	37	17. | + |             	37	17.582 | 
| − |             	37.1	17. | + |             	37.1	17.611 | 
| − |             	37.2	17. | + |             	37.2	17.639 | 
| − |             	37.3	17. | + |             	37.3	17.667 | 
| − |             	37.4	17. | + |             	37.4	17.695 | 
| − |             	37.5	17. | + |             	37.5	17.723 | 
| − |             	37.6	17. | + |             	37.6	17.751 | 
| − |             	37.7	17. | + |             	37.7	17.779 | 
| − |             	37.8	17. | + |             	37.8	17.807 | 
| − |             	37.9	17. | + |             	37.9	17.834 | 
| − |             	38	17. | + |             	38	17.862 | 
| − |             	38.1	17. | + |             	38.1	17.889 | 
| − |             	38.2	17. | + |             	38.2	17.917 | 
| − |             	38.3	17. | + |             	38.3	17.944 | 
| − |             	38.4	17. | + |             	38.4	17.971 | 
| − |             	38.5	 | + |             	38.5	17.998 | 
| − |             	38.6	18. | + |             	38.6	18.025 | 
| − |             	38.7	18. | + |             	38.7	18.051 | 
| − |             	38.8	18. | + |             	38.8	18.078 | 
| − |             	38.9	18. | + |             	38.9	18.105 | 
| − |             	39	18. | + |             	39	18.131 | 
| − |             	39.1	18. | + |             	39.1	18.157 | 
| − |             	39.2	18. | + |             	39.2	18.184 | 
| − |             	39.3	18. | + |             	39.3	18.210 | 
| − |             	39.4	18. | + |             	39.4	18.236 | 
| − |             	39.5	18. | + |             	39.5	18.262 | 
| − |             	39.6	18. | + |             	39.6	18.288 | 
| − |             	39.7	18. | + |             	39.7	18.313 | 
| − |             	39.8	18. | + |             	39.8	18.339 | 
| − |             	39.9	18. | + |             	39.9	18.365 | 
| − |             	40	18. | + |             	40	18.390 | 
| − |             	40.1	18. | + |             	40.1	18.415 | 
| − |             	40.2	18. | + |             	40.2	18.441 | 
| − |             	40.3	18. | + |             	40.3	18.466 | 
| − |             	40.4	18. | + |             	40.4	18.491 | 
| − |             	40.5	18. | + |             	40.5	18.516 | 
| − |             	40.6	18. | + |             	40.6	18.540 | 
| − |             	40.7	18. | + |             	40.7	18.565 | 
| − |             	40.8	18. | + |             	40.8	18.590 | 
| − |             	40.9	18. | + |             	40.9	18.614 | 
| − |             	41	18. | + |             	41	18.639 | 
| − |             	41.1	18. | + |             	41.1	18.663 | 
| − |             	41.2	18. | + |             	41.2	18.687 | 
| − |             	41.3	18. | + |             	41.3	18.711 | 
| − |             	41.4	18. | + |             	41.4	18.735 | 
| − |             	41.5	18. | + |             	41.5	18.759 | 
| − |             	41.6	18. | + |             	41.6	18.783 | 
| − |             	41.7	18. | + |             	41.7	18.807 | 
| − |             	41.8	18. | + |             	41.8	18.830 | 
| − |             	41.9	18. | + |             	41.9	18.854 | 
| − |             	42	18. | + |             	42	18.877 | 
| − |             	42.1	18. | + |             	42.1	18.900 | 
| − |             	42.2	18. | + |             	42.2	18.923 | 
| − |             	42.3	18. | + |             	42.3	18.947 | 
| − |             	42.4	18. | + |             	42.4	18.970 | 
| − |             	42.5	18. | + |             	42.5	18.992 | 
| − |             	42.6	19. | + |             	42.6	19.015 | 
| − |             	42.7	19. | + |             	42.7	19.038 | 
| − |             	42.8	19. | + |             	42.8	19.060 | 
| − |             	42.9	19. | + |             	42.9	19.083 | 
| − |             	43	19. | + |             	43	19.105 | 
| − |             	43.1	19. | + |             	43.1	19.127 | 
| − |             	43.2	19. | + |             	43.2	19.150 | 
| − |             	43.3	19. | + |             	43.3	19.172 | 
| − |             	43.4	19. | + |             	43.4	19.194 | 
| − |             	43.5	19. | + |             	43.5	19.215 | 
| − |             	43.6	19. | + |             	43.6	19.237 | 
| − |             	43.7	19. | + |             	43.7	19.259 | 
| − |             	43.8	19. | + |             	43.8	19.280 | 
| − |             	43.9	19. | + |             	43.9	19.302 | 
| − |             	44	19. | + |             	44	19.323 | 
| − |             	44.1	19. | + |             	44.1	19.344 | 
| − |             	44.2	19. | + |             	44.2	19.365 | 
| − |             	44.3	19. | + |             	44.3	19.386 | 
| − |             	44.4	19. | + |             	44.4	19.407 | 
| − |             	44.5	19. | + |             	44.5	19.428 | 
| − |             	44.6	19. | + |             	44.6	19.449 | 
| − |             	44.7	19. | + |             	44.7	19.469 | 
| − |             	44.8	19. | + |             	44.8	19.490 | 
| − |             	44.9	19. | + |             	44.9	19.510 | 
| − |             	45	19. | + |             	45	19.531 | 
| − |             	45.1	19. | + |             	45.1	19.551 | 
| − |             	45.2	19. | + |             	45.2	19.571 | 
| − |             	45.3	19. | + |             	45.3	19.591 | 
| − |             	45.4	19. | + |             	45.4	19.611 | 
| − |             	45.5	19. | + |             	45.5	19.630 | 
| − |             	45.6	19. | + |             	45.6	19.650 | 
| − |             	45.7	19. | + |             	45.7	19.670 | 
| − |             	45.8	19. | + |             	45.8	19.689 | 
| − |             	45.9	19. | + |             	45.9	19.708 | 
| − |             	46	19. | + |             	46	19.728 | 
| − |             	46.1	19. | + |             	46.1	19.747 | 
| − |             	46.2	19. | + |             	46.2	19.766 | 
| − |             	46.3	19. | + |             	46.3	19.785 | 
| − |             	46.4	19. | + |             	46.4	19.804 | 
| − |             	46.5	19. | + |             	46.5	19.823 | 
| − |             	46.6	19. | + |             	46.6	19.841 | 
| − |             	46.7	19. | + |             	46.7	19.860 | 
| − |             	46.8	19. | + |             	46.8	19.878 | 
| − |             	46.9	19. | + |             	46.9	19.897 | 
| − |             	47	19. | + |             	47	19.915 | 
| − |             	47.1	19. | + |             	47.1	19.933 | 
| − |             	47.2	19. | + |             	47.2	19.951 | 
| − |             	47.3	19. | + |             	47.3	19.969 | 
| − |             	47.4	19. | + |             	47.4	19.987 | 
| − |             	47.5	20 | + |             	47.5	20.004 | 
| − |             	47.6	20. | + |             	47.6	20.022 | 
| − |             	47.7	20. | + |             	47.7	20.040 | 
| − |             	47.8	20. | + |             	47.8	20.057 | 
| − |             	47.9	20. | + |             	47.9	20.074 | 
| − |             	48	20. | + |             	48	20.091 | 
| − |             	48.1	20. | + |             	48.1	20.109 | 
| − |             	48.2	20. | + |             	48.2	20.126 | 
| − |             	48.3	20. | + |             	48.3	20.142 | 
| − |             	48.4	20. | + |             	48.4	20.159 | 
| − |             	48.5	20. | + |             	48.5	20.176 | 
| − |             	48.6	20. | + |             	48.6	20.193 | 
| − |             	48.7	20. | + |             	48.7	20.209 | 
| − |             	48.8	20. | + |             	48.8	20.225 | 
| − |             	48.9	20. | + |             	48.9	20.242 | 
| − |             	49	20. | + |             	49	20.258 | 
| − |             	49.1	20. | + |             	49.1	20.274 | 
| − |             	49.2	20. | + |             	49.2	20.290 | 
| − |             	49.3	20. | + |             	49.3	20.306 | 
| − |             	49.4	20. | + |             	49.4	20.322 | 
| − |             	49.5	20. | + |             	49.5	20.337 | 
| − |             	49.6	20. | + |             	49.6	20.353 | 
| − |             	49.7	20. | + |             	49.7	20.368 | 
| − |             	49.8	20. | + |             	49.8	20.384 | 
| − |             	49.9	20. | + |             	49.9	20.399 | 
| − |             	50	20. | + |             	50	20.414 | 
| − |             	50.1	20. | + |             	50.1	20.429 | 
| − |             	50.2	20. | + |             	50.2	20.444 | 
| − |             	50.3	20. | + |             	50.3	20.459 | 
| − |             	50.4	20. | + |             	50.4	20.474 | 
| − |             	50.5	20. | + |             	50.5	20.488 | 
| − |             	50.6	20. | + |             	50.6	20.503 | 
| − |             	50.7	20. | + |             	50.7	20.517 | 
| − |             	50.8	20. | + |             	50.8	20.532 | 
| − |             	50.9	20. | + |             	50.9	20.546 | 
| − |             	51	20. | + |             	51	20.560 | 
| − |             	51.1	20. | + |             	51.1	20.574 | 
| − |             	51.2	20. | + |             	51.2	20.588 | 
| − |             	51.3	20. | + |             	51.3	20.602 | 
| − |             	51.4	20. | + |             	51.4	20.615 | 
| − |             	51.5	20. | + |             	51.5	20.629 | 
| − |             	51.6	20. | + |             	51.6	20.642 | 
| − |             	51.7	20. | + |             	51.7	20.656 | 
| − |             	51.8	20. | + |             	51.8	20.669 | 
| − |             	51.9	20. | + |             	51.9	20.682 | 
| − |             	52	20. | + |             	52	20.695 | 
| − |             	52.1	20. | + |             	52.1	20.708 | 
| − |             	52.2	20. | + |             	52.2	20.721 | 
| − |             	52.3	20. | + |             	52.3	20.734 | 
| − |             	52.4	20. | + |             	52.4	20.747 | 
| − |             	52.5	20. | + |             	52.5	20.759 | 
| − |             	52.6	20. | + |             	52.6	20.772 | 
| − |             	52.7	20. | + |             	52.7	20.784 | 
| − |             	52.8	20. | + |             	52.8	20.797 | 
| − |             	52.9	20. | + |             	52.9	20.809 | 
| − |             	53	20. | + |             	53	20.821 | 
| − |             	53.1	20. | + |             	53.1	20.833 | 
| − |             	53.2	20. | + |             	53.2	20.845 | 
| − |             	53.3	20. | + |             	53.3	20.856 | 
| − |             	53.4	20. | + |             	53.4	20.868 | 
| − |             	53.5	20. | + |             	53.5	20.880 | 
| − |             	53.6	20. | + |             	53.6	20.891 | 
| − |             	53.7	20. | + |             	53.7	20.902 | 
| − |             	53.8	20. | + |             	53.8	20.914 | 
| − |             	53.9	20. | + |             	53.9	20.925 | 
| − |             	54	20. | + |             	54	20.936 | 
| − |             	54.1	20. | + |             	54.1	20.947 | 
| − |             	54.2	20. | + |             	54.2	20.958 | 
| − |             	54.3	20. | + |             	54.3	20.968 | 
| − |             	54.4	20. | + |             	54.4	20.979 | 
| − |             	54.5	20. | + |             	54.5	20.989 | 
| − |             	54.6	21 | + |             	54.6	21.000 | 
| − |             	54.7	21. | + |             	54.7	21.010 | 
| − |             	54.8	21. | + |             	54.8	21.020 | 
| − |             	54.9	21. | + |             	54.9	21.030 | 
| − |             	55	21. | + |             	55	21.041 | 
| − |             	55.1	21. | + |             	55.1	21.050 | 
| − |             	55.2	21. | + |             	55.2	21.060 | 
| − |             	55.3	21. | + |             	55.3	21.070 | 
| − |             	55.4	21. | + |             	55.4	21.080 | 
| − |             	55.5	21. | + |             	55.5	21.089 | 
| − |             	55.6	21. | + |             	55.6	21.098 | 
| − |             	55.7	21. | + |             	55.7	21.108 | 
| − |             	55.8	21. | + |             	55.8	21.117 | 
| − |             	55.9	21. | + |             	55.9	21.126 | 
| − |             	56	21. | + |             	56	21.135 | 
| − |             	56.1	21. | + |             	56.1	21.144 | 
| − |             	56.2	21. | + |             	56.2	21.153 | 
| − |             	56.3	21. | + |             	56.3	21.161 | 
| − |             	56.4	21. | + |             	56.4	21.170 | 
| − |             	56.5	21. | + |             	56.5	21.178 | 
| − |             	56.6	21. | + |             	56.6	21.187 | 
| − |             	56.7	21. | + |             	56.7	21.195 | 
| − |             	56.8	21. | + |             	56.8	21.203 | 
| − |             	56.9	21. | + |             	56.9	21.211 | 
| − |             	57	21. | + |             	57	21.219 | 
| − |             	57.1	21. | + |             	57.1	21.227 | 
| − |             	57.2	21. | + |             	57.2	21.235 | 
| − |             	57.3	21. | + |             	57.3	21.242 | 
| − |             	57.4	21. | + |             	57.4	21.250 | 
| − |             	57.5	21. | + |             	57.5	21.257 | 
| − |             	57.6	21. | + |             	57.6	21.265 | 
| − |             	57.7	21. | + |             	57.7	21.272 | 
| − |             	57.8	21. | + |             	57.8	21.279 | 
| − |             	57.9	21. | + |             	57.9	21.286 | 
| − |             	58	21. | + |             	58	21.293 | 
| − |             	58.1	21. | + |             	58.1	21.300 | 
| − |             	58.2	21. | + |             	58.2	21.307 | 
| − |             	58.3	21. | + |             	58.3	21.313 | 
| − |             	58.4	21. | + |             	58.4	21.320 | 
| − |             	58.5	21. | + |             	58.5	21.326 | 
| − |             	58.6	21. | + |             	58.6	21.332 | 
| − |             	58.7	21. | + |             	58.7	21.339 | 
| − |             	58.8	21. | + |             	58.8	21.345 | 
| − |             	58.9	21. | + |             	58.9	21.351 | 
| − |             	59	21. | + |             	59	21.357 | 
| − |             	59.1	21. | + |             	59.1	21.362 | 
| − |             	59.2	21. | + |             	59.2	21.368 | 
| − |             	59.3	21. | + |             	59.3	21.374 | 
| − |             	59.4	21. | + |             	59.4	21.379 | 
| − |             	59.5	21. | + |             	59.5	21.385 | 
| − |             	59.6	21. | + |             	59.6	21.390 | 
| − |             	59.7	21. | + |             	59.7	21.395 | 
| − |             	59.8	21. | + |             	59.8	21.400 | 
| − |             	59.9	21. | + |             	59.9	21.405 | 
| − |             	60	21. | + |             	60	21.410 | 
| − |             	60.1	21. | + |             	60.1	21.415 | 
| − |             	60.2	21. | + |             	60.2	21.419 | 
| − |             	60.3	21. | + |             	60.3	21.424 | 
| − |             	60.4	21. | + |             	60.4	21.428 | 
| − |             	60.5	21. | + |             	60.5	21.433 | 
| − |             	60.6	21. | + |             	60.6	21.437 | 
| − |             	60.7	21. | + |             	60.7	21.441 | 
| − |             	60.8	21. | + |             	60.8	21.445 | 
| − |             	60.9	21. | + |             	60.9	21.449 | 
| − |             	61	21. | + |             	61	21.453 | 
| − |             	61.1	21. | + |             	61.1	21.457 | 
| − |             	61.2	21. | + |             	61.2	21.460 | 
| − |             	61.3	21. | + |             	61.3	21.464 | 
| − |             	61.4	21. | + |             	61.4	21.467 | 
| − |             	61.5	21. | + |             	61.5	21.471 | 
| − |             	61.6	21. | + |             	61.6	21.474 | 
| − |             	61.7	21. | + |             	61.7	21.477 | 
| − |             	61.8	21. | + |             	61.8	21.480 | 
| − |             	61.9	21. | + |             	61.9	21.483 | 
| − |             	62	21. | + |             	62	21.486 | 
| − |             	62.1	21. | + |             	62.1	21.489 | 
| − |             	62.2	21. | + |             	62.2	21.491 | 
| − |             	62.3	21. | + |             	62.3	21.494 | 
| − |             	62.4	21. | + |             	62.4	21.496 | 
| − |             	62.5	21. | + |             	62.5	21.498 | 
| − |             	62.6	21. | + |             	62.6	21.501 | 
| − |             	62.7	21. | + |             	62.7	21.503 | 
Revision as of 06:54, 25 October 2012
Kiwi Dipole Documents
Cad drawing of kiwi dipole:
File:Hrrl pos wiki dipole 1.pdf File:Hrrl pos wiki dipole 2.pdf File:Hrrl pos wiki dipole 3.pdf File:Hrrl pos wiki dipole 4.pdf File:Hrrl pos wiki dipole 5.pdf
Bending Radius of the kiwi dipole is 318.5 mm, and it bends beam by 45 degree.
The path of the beam in the dipole then
1st Mapping
File:Kiwi Dipole Magnet Mappings.pdf
Tag Number: 079220
Bending magnet that was to be used with LCS (compact magnets) The horizontal and vertical tranlator have a range for 150 mm i.e. 15 cm.
Power on I = 20.4 A
| x (mm) | y (mm) | B (kG) | |
| 127 | 0 | ||
| 127 | 10 | -0.106 | |
| 127 | 20 | -0.169 | |
| 127 | 30 | -0.2729 | |
| 127 | 40 | -0.448 | |
| 127 | 50 | -0.728 | |
| 127 | 60 | -0.97 | |
| 127 | 70 | -1.025 | |
| 127 | 80 | -1.029 | |
| 127 | 90 | -1.03 | |
| 127 | 100 | -1.029 | |
| 127 | 110 | -1.028 | |
| 127 | 120 | -1.028 | |
| 127 | 130 | -1.028 | |
| 127 | 140 | -1.028 | |
| 127 | 150 | -1.028 | |
| y = 150 mm is roughly center of the bend. | |||
| 127 | 150 | -1.028 | |
| 127 | 140 | -1.031 | |
| 127 | 130 | -1.0342 | |
| 127 | 120 | -1.036 | |
| 127 | 110 | -1.036 | |
| 127 | 100 | -1.036 | |
| 127 | 90 | -1.036 | |
| 127 | 80 | -1.0355 | |
| 127 | 70 | -1.03 | |
| 127 | 60 | -0.977 | |
| 127 | 50 | -0.7354 | |
| 127 | 40 | -0.4527 | |
| 127 | 30 | -0.275 | |
| 127 | 20 | -0.17 | |
| 127 | 10 | -0.1066 | |
| 127 | 0 | -0.0673 | |
| Again | |||
| x (mm) | y (mm) | B (kG) | |
| 127 | 0 | ||
| 127 | 10 | -0.1062 | |
| 127 | 20 | -0.1699 | |
| 127 | 30 | -0.2738 | |
| 127 | 40 | -0.449 | |
| 127 | 50 | -0.7283 | edge of poles 100 px | 
| 127 | 60 | -0.9712 | |
| 127 | 70 | -1.0253 | |
| 127 | 80 | -1.03 | |
| 127 | 90 | -1.03 | |
| 127 | 100 | -1.0298 | |
| 127 | 110 | -1.028 | |
| 127 | 120 | -1.0285 | |
| 127 | 130 | -1.0286 | |
| 127 | 140 | -1.0282 | |
| 127 | 150 | -1.0278 | 
     y (mm)      B (kG)   error B (kG)
    0.00000    -0.06717     0.00015
   10.00000    -0.10627     0.00031
   20.00000    -0.16963     0.00055
   30.00000    -0.27390     0.00105
   40.00000    -0.44990     0.00248
   50.00000    -0.73057     0.00419
   60.00000    -0.97273     0.00374
   70.00000    -1.02677     0.00280
   80.00000    -1.03150     0.00350
   90.00000    -1.03200     0.00346
  100.00000    -1.03160     0.00383
  110.00000    -1.03067     0.00462
  120.00000    -1.03083     0.00448
  130.00000    -1.03027     0.00342
  140.00000    -1.02907     0.00168
  150.00000    -1.02793     0.00012
X at 127, Y at 150
| x (mm) | y (mm) | I | B (kG) | |
| 127 | 150 | 20.1 | -1.0279 | |
| 127 | 150 | 30.1 | -1.53 | |
| 127 | 150 | 25.1 | -1.2916 | |
| 127 | 150 | 20.1 | -1.0359 | |
| 127 | 150 | 15 | -0.781 | |
| 127 | 150 | 10 | -0.534 | |
| 127 | 150 | 5 | -0.277 | |
| 127 | 150 | 0 | -0.017 | |
| Again | ||||
| 127 | 150 | 0 | -0.01726 | |
| 127 | 150 | 5 | -0.266 | |
| 127 | 150 | 10 | -0.518 | |
| 127 | 150 | 15 | -0.7713 | |
| 127 | 150 | 20 | -1.02 | |
| 127 | 150 | 25 | -1.272 | |
| 127 | 150 | 30 | -1.52 | 
I (Amps) B (kG) error B (kG) 0.00000 -0.01713 0.00018 5.00000 -0.27150 0.00778 10.00000 -0.52600 0.01131 15.00000 -0.77615 0.00686 20.00000 -1.02795 0.01124 25.00000 -1.28180 0.01386 30.00000 -1.52500 0.00707
Vertical Scan
Power on I = 20 A
Gap width 5cm.
| x (mm) | y (mm) | B (kG) | |
| 135 (lower edge) | 150 | -1.0369 | |
| 132 | 150 | -1.0379 | |
| 129 | 150 | -1.0382 | |
| 126 | 150 | -1.0384 | |
| 123 | 150 | -1.0385 | |
| 120 | 150 | -1.0386 | |
| 118 | 150 | -1.0387 | |
| 116 | 150 | -1.0388 | |
| 114 | 150 | -1.039 | 
x (mm) y(mm) B(kG) 135.0000 150.0000 -1.0369 132.0000 150.0000 -1.0379 129.0000 150.0000 -1.0382 126.0000 150.0000 -1.0384 123.0000 150.0000 -1.0385 120.0000 150.0000 -1.0386 118.0000 150.0000 -1.0387 116.0000 150.0000 -1.0388 114.0000 150.0000 -1.0390
Horizontal Scan
go for X = 124.5, y = 150 (dipole center), I = 20 A.
| x (mm) | y (mm) | I (A) | B (kG) | |
| 124.5 | 150 | 20 | -1.0388 | |
| 124.5 | 140 | 20 | -1.04 | |
| 124.5 | 130 | 20 | -1.04 | |
| 124.5 | 120 | 20 | -1.0409 | |
| 124.5 | 110 | 20 | -1.041 | |
| 124.5 | 100 | 20 | -1.0411 | |
| 124.5 | 90 | 20 | -1.041 | |
| 124.5 | 80 | 20 | -1.0408 | |
| 124.5 | 70 | 20 | -1.355 | This data is problematic. | 
| 124.5 | 60 | 20 | -0.9799 | |
| 124.5 | 50 | 20 | -0.74 | |
| 124.5 | 40 | 20 | -0.457 | |
| 124.5 | 30 | 20 | -0.2776 | |
| 124.5 | 20 | 20 | -0.1718 | |
| 124.5 | 0 | 20 | -0.0684 | 
Figure according to the data above. There is problem when y = 70 mm.
 
x (mm) y (mm) I (A) B (kG) 124.50000 150.00000 20.00000 -1.03880 124.50000 140.00000 20.00000 -1.04000 124.50000 130.00000 20.00000 -1.04000 124.50000 120.00000 20.00000 -1.04090 124.50000 110.00000 20.00000 -1.04100 124.50000 100.00000 20.00000 -1.04110 124.50000 90.00000 20.00000 -1.04100 124.50000 80.00000 20.00000 -1.04080 124.50000 70.00000 20.00000 -1.03550 124.50000 60.00000 20.00000 -0.97990 124.50000 50.00000 20.00000 -0.74000 124.50000 40.00000 20.00000 -0.45700 124.50000 30.00000 20.00000 -0.27760 124.50000 20.00000 20.00000 -0.17180 124.50000 0.00000 20.00000 -0.06840
Figure according to the data above. The problem when y = 70 mm is changed to -1.0355
 
Power on X = 124.5, Y = 150
| x (mm) | y (mm) | I (A) | B (kG) | |
| 124.5 | 150 | 0 | -0.0123 | |
| 124.5 | 150 | 5 | -0.2676 | |
| 124.5 | 150 | 10 | -0.516 | |
| 124.5 | 150 | 15 | -0.771 | |
| 124.5 | 150 | 20 | -1.028 | |
| 124.5 | 150 | 25 | -1.2735 | |
| 124.5 | 150 | 30 | -1.5217 | |
| 124.5 | 150 | 30 | -1.5218 | |
| 124.5 | 150 | 25 | -1.287 | |
| 124.5 | 150 | 20 | -1.037 | |
| 124.5 | 150 | 15 | -0.7855 | |
| 124.5 | 150 | 10 | -0.5313 | |
| 124.5 | 150 | 5 | -0.2747 | |
| 124.5 | 150 | 0 | -0.0164 | 
I (A) B(kG) error B(kG) 30.00000 -1.52175 0.00007 25.00000 -1.28025 0.00955 20.00000 -1.03250 0.00636 15.00000 -0.77825 0.01025 10.00000 -0.52365 0.01082 5.00000 -0.27115 0.00502 0.00000 -0.01435 0.00290
Tag Number: 42125
| x (mm) | y (mm) | I (A) | B (kG) | |
| 0 | 0 | Power off | ||
| 0 | 0 | 20 | ||
| 111.75 | 0 | 20 | 
| x (mm) | y (mm) | I (A) | B (kG) | 
| 111.75 | 10 | 20 | 0.0637 | 
| 111.75 | 20 | 20 | 0.102 | 
| 111.75 | 30 | 20 | 0.1675 | 
| 111.75 | 40 | 20 | 0.2774 | 
| 111.75 | 50 | 20 | 0.4654 | 
| 111.75 | 60 | 20 | 0.756 | 
| 111.75 | 70 | 20 | 0.9898 | 
| 111.75 | 80 | 20 | 1.0312 | 
| 111.75 | 90 | 20 | 1.0358 | 
| 111.75 | 100 | 20 | 1.0362 | 
| 111.75 | 110 | 20 | 1.0363 | 
| 111.75 | 120 | 20 | 1.0363 | 
| 111.75 | 130 | 20 | 1.0362 | 
| 111.75 | 140 | 20 | 1.036 | 
| 111.75 | 150 | 20 | 1.036 | 
| 111.75 | 0 | 20 | 0.0402 | 
| 111.75 | 10 | 20 | 0.0635 | 
| 111.75 | 20 | 20 | 0.1022 | 
| 111.75 | 30 | 20 | 0.1674 | 
| 111.75 | 40 | 20 | 0.2773 | 
| 111.75 | 50 | 20 | 0.4652 | 
| 111.75 | 60 | 20 | 0.755 | 
| 111.75 | 70 | 20 | 0.9828 | 
| 111.75 | 80 | 20 | 1.0312 | 
| 111.75 | 90 | 20 | 1.0358 | 
| 111.75 | 100 | 20 | 1.0362 | 
| 111.75 | 110 | 20 | 1.0362 | 
| 111.75 | 120 | 20 | 1.03625 | 
| 111.75 | 130 | 20 | 1.0362 | 
| 111.75 | 140 | 20 | 1.036 | 
| 111.75 | 150 | 20 | 1.036 | 
| x (mm) | y (mm) | I (A) | B (kG) | 
| 111.75 | 150 | 0 | 0.0076 | 
| 111.75 | 150 | 5 | 0.263 | 
| 111.75 | 150 | 10 | 0.52 | 
| 111.75 | 150 | 15 | 0.7754 | 
| 111.75 | 150 | 20 | 1.0313 | 
| 111.75 | 150 | 25 | 1.2869 | 
| 111.75 | 150 | 30 | 1.5389 | 
| 111.75 | 150 | 30 | 1.5389 | 
| 111.75 | 150 | 25 | 1.3 | 
| 111.75 | 150 | 20 | 1.0484 | 
| 111.75 | 150 | 15 | 0.7945 | 
| 111.75 | 150 | 10 | 0.534 | 
| 111.75 | 150 | 5 | 0.276 | 
| 111.75 | 150 | 0 | 0.01386 | 
| x (mm) | y (mm) | I (A) | B (kG) | 
| 123.25 | 150 | 20 | 1.0339 | 
| 120.25.25 | 150 | 20 | 1.0338 | 
| 117.25 | 150 | 20 | 1.034 | 
| 114.25 | 150 | 20 | 1.034 | 
| 111.25 | 150 | 20 | 1.0342 | 
| 111.25 | 150 | 20 | 1.0343 | 
| 108.25 | 150 | 20 | 1.0342 | 
| 105.25 | 150 | 20 | 1.0343 | 
| 102.25 | 150 | 20 | 1.0344 | 
| 99.25 | 150 | 20 | 1.03435 | 
| x (mm) | y (mm) | I (A) | B (kG) | 
| 111.25 | 150 | 20 | 1.0339 | 
| 111.25 | 0 | 20 | 0.04 | 
| 111.25 | 10 | 20 | 0.0633 | 
| 111.25 | 20 | 20 | 0.102 | 
| 111.25 | 30 | 20 | 0.1671 | 
| 111.25 | 40 | 20 | 0.2767 | 
| 111.25 | 50 | 20 | 0.4643 | 
| 111.25 | 60 | 20 | 0.7544 | 
| 111.25 | 70 | 20 | 0.9818 | 
| 111.25 | 80 | 20 | 1.0295 | 
| 111.25 | 90 | 20 | 1.034 | 
| 111.25 | 100 | 20 | 1.0344 | 
| 111.25 | 110 | 20 | 1.0345 | 
| 111.25 | 120 | 20 | 1.0345 | 
| 111.25 | 130 | 20 | 1.0345 | 
| 111.25 | 140 | 20 | 4.0343 | 
| 111.25 | 150 | 20 | 10.342 | 
| 111.25 | 0 | 20 | 0.04 | 
| 111.25 | 10 | 20 | 0.0632 | 
| 111.25 | 20 | 20 | 0.1018 | 
| 111.25 | 30 | 20 | 0.1669 | 
| 111.25 | 40 | 20 | 0.2767 | 
| 111.25 | 50 | 20 | 0.4639 | 
| 111.25 | 60 | 20 | 0.754 | 
| 111.25 | 70 | 20 | 0.9816 | 
| 111.25 | 80 | 20 | 1.0294 | 
| 111.25 | 90 | 20 | 1.034 | 
| 111.25 | 100 | 20 | 1.0344 | 
| 111.25 | 110 | 20 | 1.0344 | 
| 111.25 | 120 | 20 | 1.0344 | 
| 111.25 | 130 | 20 | 1.0343 | 
| 111.25 | 140 | 20 | 4.0342 | 
| 111.25 | 150 | 20 | 10.342 | 
| x (mm) | y (mm) | I (A) | B (kG) | 
| 111.25 | 43 mm | 0 | |
| 111.25 | 43 mm | 5 | 0.0822 | 
| 111.25 | 43 mm | 10 | 0.1615 | 
| 111.25 | 43 mm | 15 | 0.242 | 
| 111.25 | 43 mm | 20 | 0.3227 | 
| 111.25 | 43 mm | 25 | 0.4014 | 
| 111.25 | 43 mm | 30 | 0.4793 | 
| 111.25 | 43 mm | 0 | |
| 111.25 | 43 mm | 5 | 0.08 | 
| 111.25 | 43 mm | 10 | 0.1613 | 
| 111.25 | 43 mm | 15 | 0.242 | 
| 111.25 | 43 mm | 20 | 0.3215 | 
| 111.25 | 43 mm | 25 | 0.4 | 
| 111.25 | 43 mm | 30 | 0.4783 | 
2nd Mapping
Bending radius of dipole is 319 mm. The bending radius in measurement is r = 280 mm.
Mapping of the dipole was divided into 3 parts according to the path of the ideal particle. This trajectory of particle with ideal energy should go through a fringe field (approximately straight line) and dipole field (rotation of near 45 degree with dipole bending radius of 319 mm), and another fringe field (approximately straight line). We called them A2 (entering fringe field), Rotation and A1 (Exiting fringe field).
A2
I= - 6.5 A I= - 15.25 A I= - 24 A I= - 33 A Z(mm) B (G) B (G) B (G) B (G) 81.50 -55.2500 -128.3700 200.6800 -273.6085 82.50 -52.6000 -122.1600 -191.0000 -260.3194 83.50 -50.0700 -116.2700 -181.7600 -247.6903 84.50 -47.6700 -110.6800 -173.0100 -235.7135 85.50 -45.4000 -105.3700 -164.6920 87.50 -41.1800 -95.5400 -149.2710 -203.2767 89.50 -37.3800 -86.6600 -135.3760 -184.2830 91.50 -33.9600 -78.6600 -122.8530 -167.1615 93.50 -30.8600 -71.4600 -111.5640 -151.7285 95.50 -28.0800 -64.9700 -101.3870 -137.8432 98.00 -25.1200 -57.7600 -90.1060 -122.3860 100.00 -22.8900 -52.6200 -82.0500 -111.3860 103.00 -19.9800 -45.8400 -71.4230 -96.9286 105.00 -18.2600 -41.8600 -65.1930 -88.3740 110.00 -14.6600 -33.5200 -52.1380 -70.5650 115.00 -11.8500 -27.1700 -41.9210 120.00 -9.6500 -22.0600 -34.0260 -45.8887 130.00 -6.5400 -14.8400 -22.9290 -30.7577 140.00 -4.5600 -10.2500 -15.7670 -21.0309 150.00 -3.2600 -7.2600 -11.0980 -14.7070
							
A1
I= - 6.505 A I= - 15.25 A I= - 24 A I= - 33 A Z(mm) B (G) B (G) Z(mm) B (G) B (G) 137.50 -69.4460 -160.7070 137.50 -252.3900 -342.9800 136.50 -66.4320 -153.7000 136.50 -241.2700 -328.0530 135.50 -63.5170 -146.9330 135.50 -230.6500 -313.6100 134.50 -60.7320 -140.4650 134.50 -220.5150 -299.7060 133.50 -58.0720 -134.2840 133.50 -210.8160 -286.0330 132.50 -128.3450 133.00 -206.0800 -279.6640 132.00 -54.3030 -125.5330 132.00 -197.0500 -267.3660 131.00 -51.9270 -120.0150 131.00 -188.4130 -255.5850 130.00 -49.6620 -114.7500 130.00 -180.1390 -244.2880 128.00 -45.4210 -104.9110 128.00 -164.6400 -223.1900 126.00 -41.5550 -95.9450 126.00 -150.5300 -204.0060 124.00 -38.0300 -87.7600 124.00 -137.6900 -186.4830 122.00 -34.8100 -80.2900 122.00 -125.9700 -170.5440 120.00 -31.8780 -73.4860 120.00 -115.2900 -156.0020 118.00 -29.2060 -67.2900 118.00 -105.5500 -142.7470 116.00 -26.7690 -61.6400 116.00 -96.6900 -130.6987 114.00 -24.6392 -56.5000 114.00 -88.6240 -119.7218 112.00 -22.6060 -51.5000 112.00 -81.2700 -109.7030 110.00 -20.7550 -47.5500 110.00 -74.5700 -100.6170 105.00 -7.6170 -38.4870 105.00 -60.3500 -81.2724 100.00 -13.6900 -31.3000 100.00 -49.0700 -65.9450 95.00 -11.2000 -25.6840 95.00 -40.1000 -53.7603 90.00 -9.2140 -21.1000 90.00 -32.9500 -44.0770 85.00 -7.6170 -17.4250 85.00 -27.3370 -36.3176 80.00 -6.3283 -14.4650 80.00 -22.6950 -30.0751 70.00 -4.4300 -10.1160 70.00 -15.8800 -20.9880 60.00 -3.1525 -7.2000 60.00 -11.3140 -14.8445 50.00 -2.2720 -5.2060 50.00 -8.1950 -10.6612 40.00 -1.6530 -3.8125 40.00 -6.0240 -7.7550 30.00 -1.2085 -2.8200 30.00 -4.4750 -5.6980 20.00 -1.8830 -2.1020 20.00 -3.3570 -4.2240 10.00 -0.6410 -1.5740 10.00 -2.3800 -3.1460 0.00 -0.4590 -1.1800 0.00 -1.9360 -0.3540
Rotation
 I= - 6.505 A			I= - 15.25 A			I= - 24 A			I= - 33 A	
 Theta    B 		        Theta    B		        Theta    B		        Theta    B
(degree) (G)                   (degree) (G)                    (degree) (G)                    (degree) (G)
0.00	0.0288		        0.00	-0.1150		        0.00	-0.1540		        0.00	-0.2640
55.00	-61.9200		55.00	-148.7800		55.00	-230.0300		55.00	-316.2940
55.50	-68.2600		55.25	-155.1740		55.50	-263.5000		55.25	-332.5850
55.60	-69.6200		55.40	-159.6800		55.40	-248.7940		55.30	-335.9620
55.55	-69.9400		55.45	-161.2270		55.60	-258.7300		55.40	-342.2980
56.00	-75.2000		55.50	-162.7950					        55.50	-348.8980
57.00	-91.6000		56.00	-179.4560		56.00	-279.6800		55.60	-355.9930
58.00	-112.0400		57.00	-218.6250		57.00	-341.2300		56.00	384.8570
59.00	-137.5000		58.00	-267.4440		58.00	-417.3400		57.00	-468.7430
60.00	-169.3500		59.00	-328.7500		59.00	-512.4800		58.00	-573.3970
61.00	-208.8200		60.00	-404.8500		60.00	-631.2200		59.00	-704.0110
62.00	-254.4200		61.00	-498.4100		61.00	-777.3000		60.00	-867.4160
63.00	-298.9400		62.00	605.4600		62.00	-944.5000		61.00	-1068.4410
64.00	-327.8700		63.00	-706.3700		63.00	-1102.0000		62.00	1297.4500
65.00	-340.4800		64.00	-771.0200		64.00	-1203.0000		63.00	-1514.5900
66.00	-345.0700		65.00	-299.3600		65.00	-1247.3000		64.00	1653.1900
67.00	-346.7200		66.00	-809.8500		66.00	-1263.7700		65.00	1714.0200
68.00	-347.3000		67.00	-813.6000		67.00	-1269.6000		66.00	1736.4600
69.00	-347.5400		68.00	-814.9900		68.00	-1271.8000		67.00	1744.4900
70.00	-347.6100		69.00	-815.4800		69.00	-1272.6800		68.00	1747.3940
72.00	-347.7000		70.00	-815.6800		70.00	-1273.0000		69.00	-1748.6040
74.00	-347.7800		72.00	-815.8400		72.00	-1273.3000		70.00	1749.0000
76.00	-347.9000		74.00	-816.0100		74.00	-1273.6000		72.00	1749.3300
78.00	-347.9200		76.00	-816.2300		76.00	-1273.9500		74.00	-1749.7370
80.00	-348.0000		78.00	-816.4200		78.00	-1274.2700		76.00	-1750.1000
82.00	-348.0200		80.00	-816.5400		80.00	-1274.5000		78.00	-1750.4300
84.00	0.0500		        82.00	-816.6400		82.00	-1274.7000		80.00	-1750.6940
86.00	-348.0700		84.00	-816.7200		84.00	-1274.8700		82.00	-1751.0460
88.00	-348.1000		86.00	-816.8700		86.00	-1275.1000		84.00	-1751.2660
90.00	-348.1200		88.00	-817.0000		88.00	-1275.3500		86.00	-1751.5740
92.00	-348.1200		90.00	-817.0800		90.00	-1275.5000		88.00	-1751.8930
94.00	-348.1300		92.00	-817.1700		92.00	-1275.6000		90.00	-1752.0800
96.00	-348.1200		94.00	-817.2500		94.00	-1275.7700		92.00	-1752.2120
98.00	-348.1000		96.00	-817.3100		96.00	-1275.9000		94.00	-1752.3660
100.00	-348.0700		98.00	-817.3200		98.00	-1275.8500		96.00	-1752.4760
102.00	-348.0400		100.00	-817.2600		100.00	-1275.7600		98.00	-1752.4210
103.00	-348.0100		102.00	-817.2100		102.00	-1275.6000		100.00	-1752.2230
104.00	-347.9200		103.00	-817.1200		103.00	-1275.4500		102.00	-1752.0030
105.00	-347.6700		104.00	-816.9100		104.00	-1275.1100		103.00	-1751.8050
106.00	-346.8200		105.00	-816.2700		105.00			        104.00	-1751.3320
107.00	-343.8600		106.00	-813.9200		106.00	-1270.3000		105.00	-1749.8250
108.00	-334.4600		107.00	-805.8400		107.00	-1257.6000		106.00	-1744.7540
109.00	-303.6700		108.00	-778.4700		108.00	-1214.5200		107.00	-1727.3300
109.50	-280.2300		109.00	-704.9500		109.00	-1099.7000		108.00	-1668.2600
110.00	-253.5100		109.50	-648.9400		109.50	-1012.5200		108.50	1604.0420
110.50	-226.2950		110.00	-587.0300		110.00	-915.9200		109.00	-1510.1900
111.00	-201.0330		110.50	-524.0800		110.50	-817.5300		109.50	1389.5200
112.00	-156.6420		111.00	-465.1000		111.00	-725.0000		110.00	-1256.9700
113.00	-122.1500		112.00	-362.9700		112.00	-565.5800		110.50	-1122.2200
113.50	-108.0300		113.00	-283.0300		113.00	-440.9100		111.00	-996.0170
114.00	-95.7700                 								112.00	-777.0400
115.00	-75.4300		114.00	-221.4100		114.00	-345.2400		113.00	-605.7040
116.00	-59.7560		115.00	-174.4670		115.00	-272.1800		113.50	-535.4470
116.25	-56.3900		116.00	-138.0970		116.00	-214.8900		114.00	-474.2650
116.30	-55.7380		116.25	-130.2390		116.25	-202.6770		115.00	-373.6700
116.40	-54.4500		116.30	-128.6700		116.30	-200.3710		116.25	-295.8560
116.35	-55.0800		116.40	-125.6880		116.40	-195.7000		116.30	-275.3740
116.33	-55.3180		116.50	-122.7610		116.50	-191.1400		116.35	-272.1400
180.00	-0.1100 	 	180.00	-0.1970 		117.00	-170.1670		116.40	-268.9280
                                                                180.00	-0.1900 		116.50	-262.6151
                                                                                                116.60	-256.8720
                                                                                                117.00	-233.8292
                                                                                                180.00	-0.2970
Mapping Origin
File:Hrrl wiki dipole map Origin File.txt
Mapping data and are under the curve
-6.5 A
Mapping at -6.5 Amp.
S B mm G Beam Magnetic Path Field 0 -5.996 5 -7.024 10 -8.265 15 -9.766 20 -11.596 25 -13.836 30 -16.596 35 -20.011 40 -24.25 45 -29.55 50 -35.96 55 -44.25 60 -54.67 65 -67.776 70 -84.225 75 -104.806 80 -130.495 85 -162.485 90 -202.426 92 -221.08 94 -241.527 96 -263.96 98 -288.57 100 -315.31 102 -344.89 104 -377.23 105.11 -395.22 107.9 -447.35 110.68 -505.17 113.46 -576.45 116.24 -629.02 119.02 -686.3 121.81 -733.05 124.59 -766.68 127.37 -788.63 132.94 -809.26 138.5 -815.77 144.07 -817.76 149.63 -818.35 155.2 -818.59 166.33 -818.79 177.46 -819.04 188.58 -819.25 199.71 -819.45 210.84 -819.59 221.97 -819.72 233.1 -819.86 244.23 -820 255.36 -820.16 266.49 -820.3 277.62 -820.4 288.75 -820.43 294.32 -820.4 305.44 -820.38 311.01 -820.24 316.57 -819.74 322.14 -817.73 324.92 -815.06 327.7 -809.82 330.49 -799.64 333.27 -780.86 336.05 -749.13 338.83 -700.97 341.62 -639.14 344.4 -570.24 347.18 -500.24 349.96 -435.41 352.75 -377.2 355.53 -326.14 356.53 -305.79 358.53 -275.51 360.53 -248.38 362.53 -224.38 365.53 -192.56 368.53 -165.48 371.53 -142.4 372.53 -135.47 377.53 -105.75 382.53 -82.85 387.53 -65.196 392.53 -51.56 397.53 -41.05 402.53 -32.897 412.53 -21.705 422.53 -14.625 447.53 -6.12 472.53 -2.94
Area under the curve
[4/18/2012 01:47 "" (2456035)] integ1 Input iy = [Book1]6A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]6A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 85 area = -90700.3274 y0 = -353.05 x0 = 272.06 dx = 245.38386115956
-15.25 A
Mapping at -15.25 Amp.
S B mm G Beam Magnetic Path Field 0 -5.996 5 -7.024 10 -8.265 15 -9.766 20 -11.596 25 -13.836 30 -16.596 35 -20.011 40 -24.25 45 -29.55 50 -35.96 55 -44.25 60 -54.67 65 -67.776 70 -84.225 75 -104.806 80 -130.495 85 -162.485 90 -202.426 92 -221.08 94 -241.527 96 -263.96 98 -288.57 100 -315.31 102 -344.89 104 -377.23 105.11 -395.22 107.9 -447.35 110.68 -505.17 113.46 -576.45 116.24 -629.02 119.02 -686.3 121.81 -733.05 124.59 -766.68 127.37 -788.63 132.94 -809.26 138.5 -815.77 144.07 -817.76 149.63 -818.35 155.2 -818.59 166.33 -818.79 177.46 -819.04 188.58 -819.25 199.71 -819.45 210.84 -819.59 221.97 -819.72 233.1 -819.86 244.23 -820 255.36 -820.16 266.49 -820.3 277.62 -820.4 288.75 -820.43 294.32 -820.4 305.44 -820.38 311.01 -820.24 316.57 -819.74 322.14 -817.73 324.92 -815.06 327.7 -809.82 330.49 -799.64 333.27 -780.86 336.05 -749.13 338.83 -700.97 341.62 -639.14 344.4 -570.24 347.18 -500.24 349.96 -435.41 352.75 -377.2 355.53 -326.14 356.53 -305.79 358.53 -275.51 360.53 -248.38 362.53 -224.38 365.53 -192.56 368.53 -165.48 371.53 -142.4 372.53 -135.47 377.53 -105.75 382.53 -82.85 387.53 -65.196 392.53 -51.56 397.53 -41.05 402.53 -32.897 412.53 -21.705 422.53 -14.625 447.53 -6.12 472.53 -2.94
Area under the curve
[4/18/2012 02:17 "" (2456035)] integ1 Input iy = [Book1]15A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]15A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 87 area = -210413.9633 y0 = -820.43 x0 = 288.75 dx = 245.25506096565
24 A
Mapping at - 24 A Amp.
S B mm G Beam Magnetic Path Field 0 -9.243 5 -10.843 10 -12.773 15 -15.12 20 -17.98 25 -21.488 30 -25.808 35 -30.97 40 -37.575 45 -45.83 50 -56.175 55 -69.179 60 -85.536 65 -106.117 70 -131.394 75 -164.266 80 -204.61 85 -254.866 90 -317.34 92 -346.6 94 -378.67 96 -413.85 98 -452.39 100 -494.75 102 -541.15 104 -591.94 105.11 -615.64 107.9 -696.51 110.68 -787.1 113.46 -884.2 116.24 -979.92 119.02 -1069.3 121.81 -1142.4 124.59 -1195 127.37 -1229.2 130.15 -1249.7 132.94 -1261.3 138.5 -1271.5 144.07 -1274.7 149.63 -1275.7 155.2 -1276.2 166.33 -1276.7 177.46 -1277 188.58 -1277.5 199.71 -1277.9 210.84 -1278.2 221.97 -1278.4 233.1 -1278.7 244.23 -1279 255.36 -1279.2 266.49 -1279.44 277.62 -1279.56 288.75 -1279.52 294.32 -1279.46 299.88 -1279.4 305.44 -1279.26 311.01 -1279 316.57 -1278.17 322.14 -1275 324.92 -1270.8 327.7 -1262.6 330.49 -1246.67 333.27 -1217.4 336.05 -1167.8 338.83 -1092.5 341.62 -996.14 344.4 -888.66 347.18 -779.86 349.96 -679.2 352.75 -588.1 355.53 -508.2 356.53 -481.38 358.53 -433.77 360.53 -391.15 362.53 -353 365.53 -302.89 368.53 -260.44 371.53 -224.09 372.53 -213.18 377.53 -166.37 382.53 -130.298 387.53 -102.48 392.53 -81.009 397.53 -64.45 402.53 -51.6 412.53 -33.78 422.53 -22.83 447.53 -9.45 472.53 -4.46
Area under the curve
[4/18/2012 02:22 "" (2456035)] integ1 Input iy = [Book1]24A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]24A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 89 area = -328194.84795 y0 = -1279.56 x0 = 277.62 dx = 245.22443902201
33 A
Mapping at - 33 Amp.
S B mm G Beam Magnetic Path Field 0 -11.425 5 -13.417 10 -15.828 15 -18.25 20 -22.315 25 -26.683 30 -31.873 35 -38.504 40 -46.74 45 -57.044 50 -69.95 55 -86.175 60 -106.593 65 -132.263 70 -164.517 75 -204.863 80 -255.216 85 -317.7 90 -395.93 92 -432.4 94 -472.48 96 -516.44 98 -564.64 100 -617.51 102 -675.33 104 -738.69 105.11 -767.57 107.9 -868.32 110.68 -980.56 113.46 -1101.2 116.24 -1220.8 119.02 -1331.6 121.81 -1422.5 124.59 -1487.8 127.37 -1530.3 130.15 -1558.4 132.94 -1570.3 138.5 -1582.9 144.07 -1586.9 149.63 -1588.2 155.2 -1588.74 166.33 -1589.3 177.46 -1589.8 188.58 -1590.37 199.71 -1590.73 210.84 -1591.05 221.97 -1591.4 233.1 -1591.8 244.23 -1592.07 255.36 -1592.3 266.49 -1592.4 277.62 -1592.7 288.75 -1592.7 294.32 -1592.6 299.88 -1592.46 305.44 -1592.3 311.01 -1592 316.57 -1590.9 322.14 -1586.97 324.92 -1581.7 327.7 -1571.5 330.49 -1551.8 333.27 -1515.25 336.05 -1453.6 338.83 -1360 341.62 -1239.46 344.4 -1105.5 347.18 -969.8 349.96 -844.62 352.75 -732.05 355.53 -632.51 356.53 -597.3 358.53 -538.2 360.53 -485.2 362.53 -437.7 365.53 -375.37 368.53 -322.4 371.53 -277.28 372.53 -263.9 377.53 -205.84 382.53 -161.1 387.53 -126.58 392.53 -99.94 397.53 -79.38 402.53 -63.56 412.53 -41.35 422.53 -27.64 447.53 -11.3 472.53 -5.193
Area under the curve
[4/18/2012 02:23 "" (2456035)] integ1 Input iy = [Book1]30A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]30A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 89 area = -408481.827 y0 = -1592.7 x0 = 277.62 dx = 245.24936698806
Effective B-Field
Effective B-field = (Area Under the Curve) / (Beam path in dipole)
| Scan Current | Area Under the Curve (G*mm) | Beam path in dipole (mm) | Effective B-field (G) | |
| -6.50A | -90700.3274 | 250.149315 | -362.584752 | |
| -15.25A | -210413.9633 | 250.149315 | -841.153466 | |
| -24A | -328194.84795 | 250.149315 | -1 311.99579 | |
| -33 A | -408481.827 | 250.149315 | -1 632.95201 | 
Coil current vs Electron Beam Energy
Magnet (or momentum) rigidity:
p is momentum of the particle. q is the charge of the particle. is the bending radius of the dipole. B is magnetic filed strength.
For an electron
1 Gauss is Tesla
| Coil Current (Amp) | dipole (m) | Effective B-field (T) | P [MeV/c] | 
| -6.50 | 0.3185 | -0.0362584752 | 3.46210054 | 
| -15.25 | 0.3185 | -0.0841153466 | 8.03166116 | 
| -24 | 0.3185 | -0.131199579 | 12.5274472 | 
| -33 | 0.3185 | -0.163295201 | 15.5920623 | 
| Coil Current (Amp) | P [MeV/c] | En using field map (MeV) | Corresponding En from table (MeV) | 
| -6.50 | 3.46210054 | 3.49960871 | 2.403 | 
| -15.25 | 8.03166116 | 8.04790047 | (6.129+6.350)/2 | 
| -24 | 12.5274472 | 12.5378648 | 10.095 | 
| -33 | 15.5920623 | 15.6004336 | 14.064 | 
Coil En Current (Amp) (MeV) 6.50 3.49960871 15.25 8.04790047 24 12.5378648 33 15.6004336
Fitting for En vs I
matlab Poly fit method
S =
       R: [3x3 double]
      df: 1
   normr: 0.3244
table =
6.5000 3.4996 3.4261 0.0735 15.2500 8.0479 8.2673 -0.2194 24.0000 12.5379 12.3216 0.2163 33.0000 15.6004 15.6708 -0.0704
MATLAB Polyfit Fit for En vs I: En = 0.66503 + 0.66503I + -0.00514I^2
Matrix Inversion Method
Matrix Inversion Method Fit for En vs I: En = (-0.67944+-2.18159) + (0.66503+-0.25773)I + (-0.00514+-0.00639)I^2
average of two method
0.014 + (0.665+-0.258)I + (-0.00514+-0.00639)I^2
Estimation for En vs I
Current (A) Energy (MeV)
          	0.1	0.080
          	0.2	0.147
          	0.3	0.213
          	0.4	0.279
          	0.5	0.345
          	0.6	0.411
          	0.7	0.477
          	0.8	0.543
          	0.9	0.608
          	1	0.674
          	1.1	0.739
          	1.2	0.805
          	1.3	0.870
          	1.4	0.935
          	1.5	1.000
          	1.6	1.065
          	1.7	1.130
          	1.8	1.194
          	1.9	1.259
          	2	1.323
          	2.1	1.388
          	2.2	1.452
          	2.3	1.516
          	2.4	1.580
          	2.5	1.644
          	2.6	1.708
          	2.7	1.772
          	2.8	1.836
          	2.9	1.899
          	3	1.963
          	3.1	2.026
          	3.2	2.089
          	3.3	2.153
          	3.4	2.216
          	3.5	2.279
          	3.6	2.341
          	3.7	2.404
          	3.8	2.467
          	3.9	2.529
          	4	2.592
          	4.1	2.654
          	4.2	2.716
          	4.3	2.778
          	4.4	2.840
          	4.5	2.902
          	4.6	2.964
          	4.7	3.026
          	4.8	3.088
          	4.9	3.149
          	5	3.211
          	5.1	3.272
          	5.2	3.333
          	5.3	3.394
          	5.4	3.455
          	5.5	3.516
          	5.6	3.577
          	5.7	3.638
          	5.8	3.698
          	5.9	3.759
          	6	3.819
          	6.1	3.879
          	6.2	3.939
          	6.3	3.999
          	6.4	4.059
          	6.5	4.119
          	6.6	4.179
          	6.7	4.239
          	6.8	4.298
          	6.9	4.358
          	7	4.417
          	7.1	4.476
          	7.2	4.536
          	7.3	4.595
          	7.4	4.654
          	7.5	4.712
          	7.6	4.771
          	7.7	4.830
          	7.8	4.888
          	7.9	4.947
          	8	5.005
          	8.1	5.063
          	8.2	5.121
          	8.3	5.179
          	8.4	5.237
          	8.5	5.295
          	8.6	5.353
          	8.7	5.410
          	8.8	5.468
          	8.9	5.525
          	9	5.583
          	9.1	5.640
          	9.2	5.697
          	9.3	5.754
          	9.4	5.811
          	9.5	5.868
          	9.6	5.924
          	9.7	5.981
          	9.8	6.037
          	9.9	6.094
          	10	6.150
          	10.1	6.206
          	10.2	6.262
          	10.3	6.318
          	10.4	6.374
          	10.5	6.430
          	10.6	6.485
          	10.7	6.541
          	10.8	6.596
          	10.9	6.652
          	11	6.707
          	11.1	6.762
          	11.2	6.817
          	11.3	6.872
          	11.4	6.927
          	11.5	6.982
          	11.6	7.036
          	11.7	7.091
          	11.8	7.145
          	11.9	7.200
          	12	7.254
          	12.1	7.308
          	12.2	7.362
          	12.3	7.416
          	12.4	7.470
          	12.5	7.523
          	12.6	7.577
          	12.7	7.630
          	12.8	7.684
          	12.9	7.737
          	13	7.790
          	13.1	7.843
          	13.2	7.896
          	13.3	7.949
          	13.4	8.002
          	13.5	8.055
          	13.6	8.107
          	13.7	8.160
          	13.8	8.212
          	13.9	8.264
          	14	8.317
          	14.1	8.369
          	14.2	8.421
          	14.3	8.472
          	14.4	8.524
          	14.5	8.576
          	14.6	8.627
          	14.7	8.679
          	14.8	8.730
          	14.9	8.781
          	15	8.833
          	15.1	8.884
          	15.2	8.934
          	15.3	8.985
          	15.4	9.036
          	15.5	9.087
          	15.6	9.137
          	15.7	9.188
          	15.8	9.238
          	15.9	9.288
          	16	9.338
          	16.1	9.388
          	16.2	9.438
          	16.3	9.488
          	16.4	9.538
          	16.5	9.587
          	16.6	9.637
          	16.7	9.686
          	16.8	9.735
          	16.9	9.784
          	17	9.834
          	17.1	9.883
          	17.2	9.931
          	17.3	9.980
          	17.4	10.029
          	17.5	10.077
          	17.6	10.126
          	17.7	10.174
          	17.8	10.222
          	17.9	10.271
          	18	10.319
          	18.1	10.367
          	18.2	10.414
          	18.3	10.462
          	18.4	10.510
          	18.5	10.557
          	18.6	10.605
          	18.7	10.652
          	18.8	10.699
          	18.9	10.746
          	19	10.793
          	19.1	10.840
          	19.2	10.887
          	19.3	10.934
          	19.4	10.981
          	19.5	11.027
          	19.6	11.073
          	19.7	11.120
          	19.8	11.166
          	19.9	11.212
          	20	11.258
          	20.1	11.304
          	20.2	11.350
          	20.3	11.395
          	20.4	11.441
          	20.5	11.486
          	20.6	11.532
          	20.7	11.577
          	20.8	11.622
          	20.9	11.667
          	21	11.712
          	21.1	11.757
          	21.2	11.802
          	21.3	11.847
          	21.4	11.891
          	21.5	11.936
          	21.6	11.980
          	21.7	12.024
          	21.8	12.068
          	21.9	12.112
          	22	12.156
          	22.1	12.200
          	22.2	12.244
          	22.3	12.287
          	22.4	12.331
          	22.5	12.374
          	22.6	12.418
          	22.7	12.461
          	22.8	12.504
          	22.9	12.547
          	23	12.590
          	23.1	12.633
          	23.2	12.675
          	23.3	12.718
          	23.4	12.761
          	23.5	12.803
          	23.6	12.845
          	23.7	12.887
          	23.8	12.929
          	23.9	12.971
          	24	13.013
          	24.1	13.055
          	24.2	13.097
          	24.3	13.138
          	24.4	13.180
          	24.5	13.221
          	24.6	13.262
          	24.7	13.304
          	24.8	13.345
          	24.9	13.386
          	25	13.427
          	25.1	13.467
          	25.2	13.508
          	25.3	13.548
          	25.4	13.589
          	25.5	13.629
          	25.6	13.669
          	25.7	13.710
          	25.8	13.750
          	25.9	13.790
          	26	13.829
          	26.1	13.869
          	26.2	13.909
          	26.3	13.948
          	26.4	13.988
          	26.5	14.027
          	26.6	14.066
          	26.7	14.105
          	26.8	14.144
          	26.9	14.183
          	27	14.222
          	27.1	14.261
          	27.2	14.299
          	27.3	14.338
          	27.4	14.376
          	27.5	14.414
          	27.6	14.453
          	27.7	14.491
          	27.8	14.529
          	27.9	14.566
          	28	14.604
          	28.1	14.642
          	28.2	14.679
          	28.3	14.717
          	28.4	14.754
          	28.5	14.792
          	28.6	14.829
          	28.7	14.866
          	28.8	14.903
          	28.9	14.940
          	29	14.976
          	29.1	15.013
          	29.2	15.049
          	29.3	15.086
          	29.4	15.122
          	29.5	15.158
          	29.6	15.195
          	29.7	15.231
          	29.8	15.266
          	29.9	15.302
          	30	15.338
          	30.1	15.374
          	30.2	15.409
          	30.3	15.445
          	30.4	15.480
          	30.5	15.515
          	30.6	15.550
          	30.7	15.585
          	30.8	15.620
          	30.9	15.655
          	31	15.689
          	31.1	15.724
          	31.2	15.759
          	31.3	15.793
          	31.4	15.827
          	31.5	15.861
          	31.6	15.895
          	31.7	15.929
          	31.8	15.963
          	31.9	15.997
          	32	16.031
          	32.1	16.064
          	32.2	16.098
          	32.3	16.131
          	32.4	16.164
          	32.5	16.197
          	32.6	16.230
          	32.7	16.263
          	32.8	16.296
          	32.9	16.329
          	33	16.362
          	33.1	16.394
          	33.2	16.426
          	33.3	16.459
          	33.4	16.491
          	33.5	16.523
          	33.6	16.555
          	33.7	16.587
          	33.8	16.619
          	33.9	16.651
          	34	16.682
          	34.1	16.714
          	34.2	16.745
          	34.3	16.776
          	34.4	16.808
          	34.5	16.839
          	34.6	16.870
          	34.7	16.900
          	34.8	16.931
          	34.9	16.962
          	35	16.993
          	35.1	17.023
          	35.2	17.053
          	35.3	17.084
          	35.4	17.114
          	35.5	17.144
          	35.6	17.174
          	35.7	17.204
          	35.8	17.233
          	35.9	17.263
          	36	17.293
          	36.1	17.322
          	36.2	17.351
          	36.3	17.381
          	36.4	17.410
          	36.5	17.439
          	36.6	17.468
          	36.7	17.496
          	36.8	17.525
          	36.9	17.554
          	37	17.582
          	37.1	17.611
          	37.2	17.639
          	37.3	17.667
          	37.4	17.695
          	37.5	17.723
          	37.6	17.751
          	37.7	17.779
          	37.8	17.807
          	37.9	17.834
          	38	17.862
          	38.1	17.889
          	38.2	17.917
          	38.3	17.944
          	38.4	17.971
          	38.5	17.998
          	38.6	18.025
          	38.7	18.051
          	38.8	18.078
          	38.9	18.105
          	39	18.131
          	39.1	18.157
          	39.2	18.184
          	39.3	18.210
          	39.4	18.236
          	39.5	18.262
          	39.6	18.288
          	39.7	18.313
          	39.8	18.339
          	39.9	18.365
          	40	18.390
          	40.1	18.415
          	40.2	18.441
          	40.3	18.466
          	40.4	18.491
          	40.5	18.516
          	40.6	18.540
          	40.7	18.565
          	40.8	18.590
          	40.9	18.614
          	41	18.639
          	41.1	18.663
          	41.2	18.687
          	41.3	18.711
          	41.4	18.735
          	41.5	18.759
          	41.6	18.783
          	41.7	18.807
          	41.8	18.830
          	41.9	18.854
          	42	18.877
          	42.1	18.900
          	42.2	18.923
          	42.3	18.947
          	42.4	18.970
          	42.5	18.992
          	42.6	19.015
          	42.7	19.038
          	42.8	19.060
          	42.9	19.083
          	43	19.105
          	43.1	19.127
          	43.2	19.150
          	43.3	19.172
          	43.4	19.194
          	43.5	19.215
          	43.6	19.237
          	43.7	19.259
          	43.8	19.280
          	43.9	19.302
          	44	19.323
          	44.1	19.344
          	44.2	19.365
          	44.3	19.386
          	44.4	19.407
          	44.5	19.428
          	44.6	19.449
          	44.7	19.469
          	44.8	19.490
          	44.9	19.510
          	45	19.531
          	45.1	19.551
          	45.2	19.571
          	45.3	19.591
          	45.4	19.611
          	45.5	19.630
          	45.6	19.650
          	45.7	19.670
          	45.8	19.689
          	45.9	19.708
          	46	19.728
          	46.1	19.747
          	46.2	19.766
          	46.3	19.785
          	46.4	19.804
          	46.5	19.823
          	46.6	19.841
          	46.7	19.860
          	46.8	19.878
          	46.9	19.897
          	47	19.915
          	47.1	19.933
          	47.2	19.951
          	47.3	19.969
          	47.4	19.987
          	47.5	20.004
          	47.6	20.022
          	47.7	20.040
          	47.8	20.057
          	47.9	20.074
          	48	20.091
          	48.1	20.109
          	48.2	20.126
          	48.3	20.142
          	48.4	20.159
          	48.5	20.176
          	48.6	20.193
          	48.7	20.209
          	48.8	20.225
          	48.9	20.242
          	49	20.258
          	49.1	20.274
          	49.2	20.290
          	49.3	20.306
          	49.4	20.322
          	49.5	20.337
          	49.6	20.353
          	49.7	20.368
          	49.8	20.384
          	49.9	20.399
          	50	20.414
          	50.1	20.429
          	50.2	20.444
          	50.3	20.459
          	50.4	20.474
          	50.5	20.488
          	50.6	20.503
          	50.7	20.517
          	50.8	20.532
          	50.9	20.546
          	51	20.560
          	51.1	20.574
          	51.2	20.588
          	51.3	20.602
          	51.4	20.615
          	51.5	20.629
          	51.6	20.642
          	51.7	20.656
          	51.8	20.669
          	51.9	20.682
          	52	20.695
          	52.1	20.708
          	52.2	20.721
          	52.3	20.734
          	52.4	20.747
          	52.5	20.759
          	52.6	20.772
          	52.7	20.784
          	52.8	20.797
          	52.9	20.809
          	53	20.821
          	53.1	20.833
          	53.2	20.845
          	53.3	20.856
          	53.4	20.868
          	53.5	20.880
          	53.6	20.891
          	53.7	20.902
          	53.8	20.914
          	53.9	20.925
          	54	20.936
          	54.1	20.947
          	54.2	20.958
          	54.3	20.968
          	54.4	20.979
          	54.5	20.989
          	54.6	21.000
          	54.7	21.010
          	54.8	21.020
          	54.9	21.030
          	55	21.041
          	55.1	21.050
          	55.2	21.060
          	55.3	21.070
          	55.4	21.080
          	55.5	21.089
          	55.6	21.098
          	55.7	21.108
          	55.8	21.117
          	55.9	21.126
          	56	21.135
          	56.1	21.144
          	56.2	21.153
          	56.3	21.161
          	56.4	21.170
          	56.5	21.178
          	56.6	21.187
          	56.7	21.195
          	56.8	21.203
          	56.9	21.211
          	57	21.219
          	57.1	21.227
          	57.2	21.235
          	57.3	21.242
          	57.4	21.250
          	57.5	21.257
          	57.6	21.265
          	57.7	21.272
          	57.8	21.279
          	57.9	21.286
          	58	21.293
          	58.1	21.300
          	58.2	21.307
          	58.3	21.313
          	58.4	21.320
          	58.5	21.326
          	58.6	21.332
          	58.7	21.339
          	58.8	21.345
          	58.9	21.351
          	59	21.357
          	59.1	21.362
          	59.2	21.368
          	59.3	21.374
          	59.4	21.379
          	59.5	21.385
          	59.6	21.390
          	59.7	21.395
          	59.8	21.400
          	59.9	21.405
          	60	21.410
          	60.1	21.415
          	60.2	21.419
          	60.3	21.424
          	60.4	21.428
          	60.5	21.433
          	60.6	21.437
          	60.7	21.441
          	60.8	21.445
          	60.9	21.449
          	61	21.453
          	61.1	21.457
          	61.2	21.460
          	61.3	21.464
          	61.4	21.467
          	61.5	21.471
          	61.6	21.474
          	61.7	21.477
          	61.8	21.480
          	61.9	21.483
          	62	21.486
          	62.1	21.489
          	62.2	21.491
          	62.3	21.494
          	62.4	21.496
          	62.5	21.498
          	62.6	21.501
          	62.7	21.503




