Difference between revisions of "Forest VirtualRealPhoton"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 18: Line 18:
 
   \begin{bmatrix}
 
   \begin{bmatrix}
 
     \frac{1}{2}(1+\epsilon) & 0 & -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)}\\
 
     \frac{1}{2}(1+\epsilon) & 0 & -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)}\\
     0 & \frac{1}{2}(1-\epsilon) & 0 & 0\\
+
     0 & \frac{1}{2}(1-\epsilon) & 0\\
 
     -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)} & 0 & \epsilon_L\\
 
     -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)} & 0 & \epsilon_L\\
 
   \end{bmatrix}
 
   \end{bmatrix}

Latest revision as of 17:06, 25 July 2012

Polarized Real Photons From Electrons

Polarized Virtual Photons From Electrons

Virtual Photon Polarization

[math]\epsilon= \left [ 1 + 2 \left ( 1 + \frac{\nu^2}{Q^2}\right ) \tan^2\left( \frac{\theta_e^{\prime}}{2}\right)\right ][/math]

Longitudinal Photon Polarization

[math]\epsilon_L= \frac{Q^2}{\nu^2}\epsilon[/math]


Polarization Density Matrix

[math] \begin{bmatrix} \frac{1}{2}(1+\epsilon) & 0 & -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)}\\ 0 & \frac{1}{2}(1-\epsilon) & 0\\ -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)} & 0 & \epsilon_L\\ \end{bmatrix} [/math]


Reference: N. Dombey, Rev. Mod. Phys., 41, 236 (1969)

Forest_Classes