Difference between revisions of "Forest VirtualRealPhoton"

From New IAC Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
Polarization Density Matrix
 
Polarization Density Matrix
  
:<math>Tr\left [  \gamma^\mu  \gamma^\nu \right] = 4g^{\mu \nu} = 4
+
:<math>
 
   \begin{bmatrix}
 
   \begin{bmatrix}
     \frac{1}{2}(1+\epsilon) & 0 & \frac{1}{2}(1+\epsilon)\\
+
     \frac{1}{2}(1+\epsilon) & 0 & -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)}\\
 
     0 & \frac{1}{2}(1-\epsilon) & 0 & 0\\
 
     0 & \frac{1}{2}(1-\epsilon) & 0 & 0\\
     0 & 0 & \epsilon_L\\
+
     -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)} & 0 & \epsilon_L\\
 
   \end{bmatrix}
 
   \end{bmatrix}
 
</math>
 
</math>

Revision as of 17:05, 25 July 2012

Polarized Real Photons From Electrons

Polarized Virtual Photons From Electrons

Virtual Photon Polarization

[math]\epsilon= \left [ 1 + 2 \left ( 1 + \frac{\nu^2}{Q^2}\right ) \tan^2\left( \frac{\theta_e^{\prime}}{2}\right)\right ][/math]

Longitudinal Photon Polarization

[math]\epsilon_L= \frac{Q^2}{\nu^2}\epsilon[/math]


Polarization Density Matrix

[math] \begin{bmatrix} \frac{1}{2}(1+\epsilon) & 0 & -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)}\\ 0 & \frac{1}{2}(1-\epsilon) & 0 & 0\\ -1 \sqrt{\frac{1}{2}\epsilon_L(1+\epsilon)} & 0 & \epsilon_L\\ \end{bmatrix} [/math]


Reference: N. Dombey, Rev. Mod. Phys., 41, 236 (1969)

Forest_Classes