Difference between revisions of "Counts Rate (44 MeV LINAC)"
| (26 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | [ | + | [https://wiki.iac.isu.edu/index.php/Roman_calculation Go Back] |
| − | + | =LINAC parameters used in calculations= | |
| − | |||
| − | |||
1) pulse width 50 ps <br> | 1) pulse width 50 ps <br> | ||
2) pulse current 50 A <br> | 2) pulse current 50 A <br> | ||
3) repetition rate 300 Hz <br> | 3) repetition rate 300 Hz <br> | ||
4) energy 44 MeV <br><br> | 4) energy 44 MeV <br><br> | ||
| + | |||
| + | |||
| + | =Counts Rate for U238 (1/2 mil of Ti radiadot)= | ||
==Number of electrons/sec on radiator== | ==Number of electrons/sec on radiator== | ||
| Line 43: | Line 44: | ||
then, incident flux on target is | then, incident flux on target is | ||
| − | <math>1.64 \cdot 10^{9} \frac{\gamma}{sec} \cdot 6.85\ % = | + | <math>1.64 \cdot 10^{9} \frac{\gamma}{sec} \cdot 6.85\ % = 1.12 \cdot 10^{8} \frac{\gamma}{sec}</math><br><br> |
==Number of neutrons/sec== | ==Number of neutrons/sec== | ||
| − | ===photonuclear cross section for <math>^{238}U(\gamma , | + | ===photonuclear cross section for <math>^{238}U(\gamma , F)</math> reaction=== |
J. T. Caldwell ''et all.,'' Phys. Rev. '''C21''', 1215 (1980): | J. T. Caldwell ''et all.,'' Phys. Rev. '''C21''', 1215 (1980): | ||
| Line 73: | Line 74: | ||
<math> Y = \frac{\gamma}{sec} \times t \times \sigma \times 2.4 = </math> | <math> Y = \frac{\gamma}{sec} \times t \times \sigma \times 2.4 = </math> | ||
| − | <math> = | + | <math> = 1.12 \cdot 10^{8} \frac{\gamma}{sec} \times 130\ mb \times 0.48\cdot 10^{22}\ \frac{atoms}{cm^2} \times 2.4 = 1.68 \cdot 10^{5}\ \frac{neutrons}{sec}</math><br><br> |
==Worst Case Isotropic Neutrons== | ==Worst Case Isotropic Neutrons== | ||
| Line 105: | Line 106: | ||
fractional solid angle = <math>\frac{40\ cm^{2}}{4 \pi\ (100\ cm)^{2}} = 3.2 \cdot 10^{-4}</math> <= geometrical acceptance | fractional solid angle = <math>\frac{40\ cm^{2}}{4 \pi\ (100\ cm)^{2}} = 3.2 \cdot 10^{-4}</math> <= geometrical acceptance | ||
| − | ==Yield== | + | ==Yield (1/2 mil of Ti and without detector efficiency)== |
the yield per second: | the yield per second: | ||
| Line 115: | Line 116: | ||
<math> 53.8\ \frac{neutrons}{sec} \times \frac{1\ sec}{300\ pulses} = 0.18\ \frac{neutrons}{pulse} </math> <br><br> | <math> 53.8\ \frac{neutrons}{sec} \times \frac{1\ sec}{300\ pulses} = 0.18\ \frac{neutrons}{pulse} </math> <br><br> | ||
| − | + | :'''53.8 neutrons/sec <= this experiment is do able''' | |
| − | + | :'''0.18 neutrons/pulse <= good for stopping pulse''' | |
| − | =Counts Rate for U238 ( | + | =Counts Rate for U238 (1/2 mil of Al converter)= |
==radiation length== | ==radiation length== | ||
| Line 125: | Line 126: | ||
r.l.(Al) = 8.89 cm | r.l.(Al) = 8.89 cm | ||
| − | radiator thickness = | + | radiator thickness = 12.5 <math>\mu m</math> |
| − | <math>\frac{ | + | <math>\frac{12.5\ \mu m}{8.89\ cm} = 1.41 \cdot 10^{-4} \ r.l.</math><br> |
==Calibration factor== | ==Calibration factor== | ||
| Line 135: | Line 136: | ||
1) radiation length: | 1) radiation length: | ||
| − | 3.48 ( | + | 1.41 (1/2 mil Al) / 3.48 (1/2 mil Ti) = 0.40 |
| + | |||
| + | ==Yield (1/2 mil of Al and without detector efficiency)== | ||
| − | |||
| − | + | :'''53.8 neutrons/sec * 0.40 = 21.5 neutrons/sec ''' | |
| − | + | :'''0.18 neutrons/pulse * 0.40 = 0.07 neutrons/pulse ''' | |
| − | =Counts Rate for Deuteron ( | + | =Counts Rate for Deuteron (1/2 mil of Ti converter)= |
===photonuclear cross section for <math> ^2H(\gamma , n) </math> reaction=== | ===photonuclear cross section for <math> ^2H(\gamma , n) </math> reaction=== | ||
| Line 248: | Line 250: | ||
<math>\frac{1}{130} \times \frac{66}{0.48} \times \frac{1}{2.4} \times \frac{3.4}{3.2} = 0.468</math> | <math>\frac{1}{130} \times \frac{66}{0.48} \times \frac{1}{2.4} \times \frac{3.4}{3.2} = 0.468</math> | ||
| − | ===Yield=== | + | ===Yield (1/2 mil of Ti and without detector efficiency)=== |
saying all other factors is the same => | saying all other factors is the same => | ||
| Line 258: | Line 260: | ||
the yield per pulse: | the yield per pulse: | ||
| − | <math> | + | <math> 25.2\ \frac{neutrons}{sec} \times \frac{1\ sec}{300\ pulses} = 0.08\ \frac{neutrons}{pulse} </math><br><br> |
| − | |||
| − | =Summary= | + | =Summary (counts rate without neutron efficiency for different radiator thickness= |
{| border="1" cellpadding="20" cellspacing="0" | {| border="1" cellpadding="20" cellspacing="0" | ||
| Line 268: | Line 269: | ||
||'''target''' | ||'''target''' | ||
||'''neutrons/sec''' | ||'''neutrons/sec''' | ||
| − | ||'''neutrons/pulse''' |- | + | ||'''neutrons/pulse''' |
| − | || | + | |- |
| + | ||1/2 mil Ti||<math>^{238}U</math>||53.8||0.18 | ||
| + | |- | ||
| + | ||1/2 mil Al||<math>^{238}U</math>||21.5||0.07 | ||
|- | |- | ||
| − | ||1 | + | ||1/2 mil Ti||<math>D_2O</math> ||25.2||0.08 |
|- | |- | ||
| − | || | + | ||1/2 mil Al||<math>D_2O</math> ||10.1||0.03 |
|} | |} | ||
Latest revision as of 19:03, 24 May 2012
LINAC parameters used in calculations
1) pulse width 50 ps
2) pulse current 50 A
3) repetition rate 300 Hz
4) energy 44 MeV
Counts Rate for U238 (1/2 mil of Ti radiadot)
Number of electrons/sec on radiator
Number of photons/sec on target
bremsstrahlung
in (10,20) MeV region we have about
0.1 photons/electrons/MeV/r.l
radiation length
r.l.(Ti) = 3.59 cm
radiator thickness = 12.5
steps together...
Alex factor (GEANT4 calculation)
Collimation factor is
6.85 % of total # of photons
then, incident flux on target is
Number of neutrons/sec
photonuclear cross section for reaction
J. T. Caldwell et all., Phys. Rev. C21, 1215 (1980):
in (10,20) MeV region the average cross section, say, is:
130 mb
target thickness,
Let's target thickness = 1 mm:
neutrons per fission
2.4 neutrons/fission
steps together...yeild
Worst Case Isotropic Neutrons
checking detector distance
we want:
the time of flight of neutron >> the pulse width
take the worst case 10 MeV neutron:
take the neutron detector 1 meter away:
23 ns >> 50 ps <= time resolution is good
geometrical factor
taking real detector 3" x 2" => S is about 40 cm^2
1 meter away
fractional solid angle = <= geometrical acceptance
Yield (1/2 mil of Ti and without detector efficiency)
the yield per second:
the yield per pulse:
- 53.8 neutrons/sec <= this experiment is do able
- 0.18 neutrons/pulse <= good for stopping pulse
Counts Rate for U238 (1/2 mil of Al converter)
radiation length
r.l.(Al) = 8.89 cm
radiator thickness = 12.5
Calibration factor
The only difference from calculations above is:
1) radiation length:
1.41 (1/2 mil Al) / 3.48 (1/2 mil Ti) = 0.40
Yield (1/2 mil of Al and without detector efficiency)
- 53.8 neutrons/sec * 0.40 = 21.5 neutrons/sec
- 0.18 neutrons/pulse * 0.40 = 0.07 neutrons/pulse
Counts Rate for Deuteron (1/2 mil of Ti converter)
photonuclear cross section for reaction
A. De Graeva et all., Phys. Rev. C45, 860 (1992):
in (10,20) MeV region the average cross section, say, is:
1000 μb
target thickness,
take , liquid (20°C):
Let's target thickness = 10 cm:
angular distribution of neutron
P. Rossi et all., Phys. Rev. C40, 2412 (1989):
relativistic kinematics
An Introduction to Nuclear and Subnuclear Physics. Emilio Segre (1964)
where
asterisks are quantities referred to CM
barred quantities refer to the velocity of the CM
calculations
| 20 MeV | ||||||
| 40 MeV |
geometrical factor
taking average for 20 and 40 MeV photons
geometrical acceptance =
Calibration factor
The only differences from calculations above are:
1) cross section correction:
1000 μb (D) / 130 mb (238U) = 1/130
2) target thickness correction:
3) neutrons per reaction correction:
1 neutron (D) / 2.4 neutrons(238U) = 1/2.4
4) geometrical factor correction:
total calibration factor is:
Yield (1/2 mil of Ti and without detector efficiency)
saying all other factors is the same =>
the yield per second :
the yield per pulse:
Summary (counts rate without neutron efficiency for different radiator thickness
| converter | target | neutrons/sec | neutrons/pulse |
| 1/2 mil Ti | 53.8 | 0.18 | |
| 1/2 mil Al | 21.5 | 0.07 | |
| 1/2 mil Ti | 25.2 | 0.08 | |
| 1/2 mil Al | 10.1 | 0.03 |


