Difference between revisions of "Lab 14 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Common Emitter
+
The Common Emitter Amplifier
  
 
=Circuit=
 
=Circuit=
  
#Construct the common emitter amplifier circuit below according to your type of emitter.
+
1.)Construct the common emitter amplifier circuit below according to your type of emitter.
#Calculate all the R and C values to use in the circuit such that
+
 
##<math>I_C > 0.5</math> mA DC with no input signal
+
[[File:TF_EIM_Lab14a.png | 400 px]]
##<math>V_{CE} \approx V_{CC}/2 > 2</math> V
+
 
## <math>V_{CC} < V_{CE}(max)</math> to prevent burnout
+
2.)Calculate all the R and C values to use in the circuit such that
## <math>V_{BE} \approx 0.6 V</math>
+
:a. Try <math>R_E \approx 220 \Omega</math>
##<math>I_D \approx 10 I_B < 1</math> mA  
+
:b. <math>I_C > 0.5</math> mA DC with no input signal
#Draw a load line using the <math>I_{C}</math> -vs- <math>I_{CE}</math> from the previous lab 13.  Record the value of <math>h_{FE}</math> or <math>\beta</math>.
+
:c. <math>V_{CE} \approx V_{CC}/2 > 2</math> V
#Set a DC operating point I^{\prime}_C so it will amplify the input pulse given to you.  Some of you will have sinusoidal pulses others will have positive or negative only pulses.
+
:d. <math>V_{CC} < V_{CE}(max)</math> to prevent burnout
#Measure all DC voltages in the circuit and compare with the predicted values.(10 pnts)
+
:e. <math>V_{BE} \approx 0.6 V</math>
#Measure the voltage gain <math>A_v</math> as a function of frequency and compare to the theoretical value.(10 pnts)
+
:f. <math>I_D \approx 10 I_B < 1</math> mA  
#Measure <math>R_{in}</math> and <math>R_{out}</math> at about 1 kHz and compare to the theoretical value.(10 pnts)
+
 
#Measure <math>A_v</math> and <math>R_{in}</math> as a function of frequency with <math>C_E</math> removed.(10 pnts)
+
3.)Draw a load line using the <math>I_{C}</math> -vs- <math>I_{CE}</math> from the previous lab 13.  Record the value of <math>h_{FE}</math> or <math>\beta</math>.
 +
 
 +
4.)Set a DC operating point <math>I^{\prime}_C</math> so it will amplify the input pulse given to you.  Some of you will have sinusoidal pulses others will have positive or negative only pulses.
 +
 
 +
5.)Measure all DC voltages in the circuit and compare with the predicted values.(10 pnts)
 +
 
 +
6.)Measure the voltage gain <math>A_v</math> as a function of frequency and compare to the theoretical value.(10 pnts)
 +
 
 +
7.)Measure <math>R_{in}</math> and <math>R_{out}</math> at about 1 kHz and compare to the theoretical value.(10 pnts)
 +
 
 +
How do you do this?  Add resistor in front of <math>C_1</math> which you vary to determine <math>R_{in}</math> and then do a similar thing for <math>R_{out}</math> except the variable reistor goes from <math>C_2</math> to ground.
 +
 
 +
8.)Measure <math>A_v</math> and <math>R_{in}</math> as a function of frequency with <math>C_E</math> removed.(10 pnts)
  
 
=Questions=
 
=Questions=

Latest revision as of 17:30, 30 March 2011

The Common Emitter Amplifier

Circuit

1.)Construct the common emitter amplifier circuit below according to your type of emitter.

TF EIM Lab14a.png

2.)Calculate all the R and C values to use in the circuit such that

a. Try RE220Ω
b. IC>0.5 mA DC with no input signal
c. VCEVCC/2>2 V
d. VCC<VCE(max) to prevent burnout
e. VBE0.6V
f. ID10IB<1 mA

3.)Draw a load line using the IC -vs- ICE from the previous lab 13. Record the value of hFE or β.

4.)Set a DC operating point IC so it will amplify the input pulse given to you. Some of you will have sinusoidal pulses others will have positive or negative only pulses.

5.)Measure all DC voltages in the circuit and compare with the predicted values.(10 pnts)

6.)Measure the voltage gain Av as a function of frequency and compare to the theoretical value.(10 pnts)

7.)Measure Rin and Rout at about 1 kHz and compare to the theoretical value.(10 pnts)

How do you do this? Add resistor in front of C1 which you vary to determine Rin and then do a similar thing for Rout except the variable reistor goes from C2 to ground.

8.)Measure Av and Rin as a function of frequency with CE removed.(10 pnts)

Questions

  1. Why does a flat load line produce a high voltage gain and a steep load line a high current gain? (10 pnts)
  2. What would be a good operating point an an npn common emitter amplifier used to amplify negative pulses?(10 pnts)
  3. What will the values of VC, VE , and IC be if the transistor burns out resulting in infinite resistance. Check with measurement.(10 pnts)
  4. What will the values of VC, VE , and IC be if the transistor burns out resulting in near ZERO resistance (ie short). Check with measurement.(10 pnts)
  5. Predict the change in the value of Rin if ID is increased from 10 IB to 50 IB(10 pnts)
  6. Sketch the AC equivalent circuit of the common emitter amplifier.(10 pnts)

Forest_Electronic_Instrumentation_and_Measurement