Difference between revisions of "TF EIMLab6 Writeup"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 59: Line 59:
  
 
1.) What happens if the amplitude of <math>V_{in}</math> is doubled.
 
1.) What happens if the amplitude of <math>V_{in}</math> is doubled.
 +
 +
V_{out} is doubled if V_{in} is doubled.
  
 
2.) What happens if R is doubled and C is halved?
 
2.) What happens if R is doubled and C is halved?
 +
 +
Nothing, RC time constant remains the same.
  
 
=Integrator=
 
=Integrator=
Line 103: Line 107:
 
I measure the times constant by looking how long it take the 2 Volt pulse to rise to (1-e^{-1}) =1.26 V
 
I measure the times constant by looking how long it take the 2 Volt pulse to rise to (1-e^{-1}) =1.26 V
  
:\tau = 60 \times 10^{-6}
+
:<math>\tau = 60 \times 10^{-6}</math>
  
:<math>R = \taus/C = 60 \times 10^{-6} s/  1.210 \times 10^{-6} F =49.6 \Omega</math>
+
:<math>R = \tau/C = 60 \times 10^{-6} s/  1.210 \times 10^{-6} F =49.6 \Omega</math>
 +
 
 +
A second measurement:
 +
 
 +
:<math>\tau = 70 \times 10^{-6}</math>
 +
 
 +
:<math>R = \tau/C = 70 \times 10^{-6} s/  1.210 \times 10^{-6} F =57.9 \Omega</math>
 +
 
 +
I would say the input impedance of the BK precision function generator is about 50 <math>\Omega</math>.
  
 
2.) The output should be given by  
 
2.) The output should be given by  
Line 121: Line 133:
 
==Questions==
 
==Questions==
  
1.) Qualitatify, why is <math>\tau^{\prime} < \tau</math>?( 10 pnts.)
+
1.) Qualitativly, why is <math>\tau^{\prime} < \tau</math>?( 10 pnts.)
 +
 
 +
:<math>\tau^{\prime} = \left ( \frac{R_1 R}{R_1+ R}\right ) C_1 =  \left ( \frac{R_1 }{R_1+ R}\right )\tau</math>
 +
 
 +
The circuit is a filter that passes high frequency changes in V but attenating low frequency.  Or in other words the power gets pushed intot he high frequncy band. 
  
 
2.) How is <math>V_{out}</math> worse than <math>V_{in}</math>( 10 pnts.)
 
2.) How is <math>V_{out}</math> worse than <math>V_{in}</math>( 10 pnts.)
 +
 +
:<math>V_{out} = V_0^{\prime} \left ( 1 - e^{-t/\tau^{\prime}}\right ) =  \left ( \frac{R_1 }{R_1+ R}\right ) V_0\left ( 1 - e^{-t/\tau^{\prime}}\right )</math>
  
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Latest revision as of 17:38, 27 March 2011

Lab 6 Pulses and RC Filters

Differentiator

1.) Adjust the pulse generator to output square pulses which at τ sec in time.

Possible capacitors

C1=1×106F
C2=10.24×109F

Possible Resistors

R1=1×103Ω
R2=14.35×103Ω


R1C1=τ1=(1×103Ω)(1×106F)=0.001 s
R1C1=τ2=(14.35×103Ω)(10.24×109F)=1.46×104
ω1=100rad/secν1=100/2π=16Hz
ω2=6805rad/secν2=1083Hz

tek012

R1C1=10τ2=1460μs



2.)Construct the circuit below selecting an RC combination such that RC 1/10

TF EIM Lab6b.png

3.)MeasureVin and Vout. Sketch a picture comparingVout and Vin.

4.) Change the pulse width such that RC=τ

5.)MeasureVin and Vout.Sketch a picture comparingVout and Vin.

6.) Change the pulse width such thatRC=10τ

7.)Measure VinandVout.Sketch a picture comparingVout and Vin.

TF EIM L6 RC10t.png TF EIM L6RCt.png TF EIM L6RC0.1t.png
RC=τ/10=14.6μs RC=τ=146μs RC=10τ=1.460ms
RC>>τ RC=τ RC<<τ


Questions

1.) What happens if the amplitude of Vin is doubled.

V_{out} is doubled if V_{in} is doubled.

2.) What happens if R is doubled and C is halved?

Nothing, RC time constant remains the same.

Integrator

Now repeat the above experiment with the resistor and capacitor swapped to form the low pass circuit below.

TF EIM PulsedRCLowpass.png


TF EIM L6 RCLP10t.png TF EIM L6RCLPt.png TF EIM L6RCLP0.1t.png
RC=τ/10=14.6μs RC=τ=146μs RC=10τ=1.460ms
RC>>τ RC=τ RC<<τ

Pulse Sharpener

The goal of this section is to demonstrate how well the circuit below can sharpen an input pulse

TF EIM Lab6a.png

1.) The first step is to create an input pulse which is rounded, similar to the output of the integrator circuit when RC = 10 τ. You can do this using a capacitor shorted across the output of the pulse generator. This will essential be coupled to the input impedance of the pulse generator and form a low pass circuit.

As a result the input voltage is given as

Vin=V0(1et/τ)

where

τ=RoutCout
Rout = impedance of the function generator at output which produces V_{in}
Cout = capacitor shorting the function generator output to ground (not shown in the above picture)
et/τ=e1==0.36788


Cout=1.210±0.005×106F

I measure the times constant by looking how long it take the 2 Volt pulse to rise to (1-e^{-1}) =1.26 V

τ=60×106
R=τ/C=60×106s/1.210×106F=49.6Ω

A second measurement:

τ=70×106
R=τ/C=70×106s/1.210×106F=57.9Ω

I would say the input impedance of the BK precision function generator is about 50 Ω.

2.) The output should be given by

Vout=V0(1et/τ)

where

τ=(R1RR1+R)C1

3.) Make measurements of the rise time τ and τ. The rise time is defined as the time it take the pulse to go from 10% of its max value to 90% of its max value.( 5 pnts.)

4.) Compare the measurement of τ to what you expected based on your measured values of C1, R1 andR.( 15 pnts.)

Questions

1.) Qualitativly, why is τ<τ?( 10 pnts.)

τ=(R1RR1+R)C1=(R1R1+R)τ

The circuit is a filter that passes high frequency changes in V but attenating low frequency. Or in other words the power gets pushed intot he high frequncy band.

2.) How is Vout worse than Vin( 10 pnts.)

Vout=V0(1et/τ)=(R1R1+R)V0(1et/τ)


Forest_Electronic_Instrumentation_and_Measurement