Difference between revisions of "Lab 13 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 176: Line 176:
 
=Questions=
 
=Questions=
  
#Compare your measured value of <math>h_{FE}</math> or <math>\beta</math> for the transistor to the spec sheet? (10 pnts)
+
1) Compare your measured value of <math>h_{FE}</math> or <math>\beta</math> for the transistor to the spec sheet? (10 pnts)
  
  
Line 191: Line 191:
  
  
#What is <math>\alpha</math> for the transistor?  <math>\alpha = \frac {I_{C}}{I_{E}}</math> (10 pnts)
+
2) What is <math>\alpha</math> for the transistor?  <math>\alpha = \frac {I_{C}}{I_{E}}</math> (10 pnts)
#The base must always be more <u>positive</u> (<u>negative</u>) than the emitter for a npn (pnp) transistor to conduct I_C.(10 pnts)
+
3) The base must always be more <u>positive</u> (<u>negative</u>) than the emitter for a npn (pnp) transistor to conduct I_C.(10 pnts)
#For a transistor to conduct I_{C} the base-emitter  junction must be <u>forward</u> biased.(10 pnts)
+
4) For a transistor to conduct I_{C} the base-emitter  junction must be <u>forward</u> biased.(10 pnts)
#For a transistor to conduct I_{C} the collector-base  junction must be <u>reversed</u> biased.(10 pnts)
+
5) For a transistor to conduct I_{C} the collector-base  junction must be <u>reversed</u> biased.(10 pnts)
 
 
 
 
  
 
=Extra credit=
 
=Extra credit=

Revision as of 17:08, 15 March 2011

Go Back to All Lab Reports


DC Bipolar Transistor Curves

Data sheet for transistors.

Media:2N3904.pdf Media:2N3906.pdf

2N3904 PinOuts.png2N3906 PinOuts.png


Using 2N3904 is more srtaight forward in this lab.

Transistor circuit

1.) Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.


I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:

Value Description
V(BR)CEO=40 V Collector-Base breakdown voltage
V(BR)EBO=6 V Emitter-Base Breakdown Voltage
V(BR)CEO=40 V Maximum Collector-Emitter Voltage
V(BR)CBO=60 V Maximum Collector-Emitter Voltage
IC=200 mA Maximum Collector Current - Continuous
P=625 mW Transistor Power rating(PMax)
hFE min  hFE max  IC, VCE
40 300 IC=0.1 mA, VCE=1.0 V
70 300 IC=1 mA, VCE=1.0 V
100 300 IC=10 mA, VCE=1.0 V
60 300 IC=50 mA, VCE=1.0 V
30 300 IC=100 mA, VCE=1.0 V


2.) Construct the circuit below according to the type of transistor you have.

TF EIM Lab13a Circuit.pngTF EIM Lab13 Circuit.png


Let RE=100Ω.

VCC<5Volts variable power supply

VBE=1 V.

Find the resistors you need to have

IB=2μA , 5μA , and 10μA

By measurements I was able to find that VBE=0.6 V. So I am going to use this value. Also let picks up VBB=1.6 V. So my current IB=VBBVBERB=(1.60.6) VRB=1.0 VRB.

Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]



3.) Measure the emitter current IE for several values of VCE by changing VCC such that the base current IB=2μ A is constant. IBVBBVBERB


I used:

[math]R_1 = (199.5 \pm 1.0)\ k\Omega [/math]
[math]R_1 = (198.7 \pm 1.0)\ k\Omega [/math]
[math]R_1 = (100.0 \pm 1.0)\ k\Omega [/math]
[math]R_B = (R_1 + R_2 + R_3) = (498.2 \pm 1.7)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 1.0)\ \Omega [/math]


Below is the table with my measurements:

Table 2uA 01.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 2uA 02.png


4a.) Repeat the previous measurements for IB5 μA. Remember to keep ICVCE<Pmax so the transistor doesn't burn out


I used:

[math]R_B = (199.5 \pm 1.0)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 1.0)\ \Omega [/math]


Below is the table with my measurements:

Table 5uA 01.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 5uA 02.png


4a.) Repeat the previous measurements for IB 10μA. Remember to keep ICVCE<Pmax so the transistor doesn't burn out


I used:

[math]R_B = (100.0 \pm 1.0)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 1.0)\ \Omega [/math]


Below is the table with my measurements:

Table 10uA 01.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 10uA 02.png



5.) Graph IC -vs- VCE for each value of IB and VCC above. (40 pnts)

Bellow is my plot for the case of IB=2μA

Plot 2uA.png


Bellow is my plot for the case of IB=5μA

Plot 5uA.png


Bellow is my plot for the case of IB=10μA

Plot 10uA.png



6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)

Questions

1) Compare your measured value of hFE or β for the transistor to the spec sheet? (10 pnts)


I will calculate my β from my measurements above in saturation region:

1)[math]I_B = 2\ \mu A[/math]:  [math]\beta = \frac{I_C}{I_B} = \frac{(0.298 \pm 0.010) mA}{(1.967 \pm 0.108) uA} = (151 \pm 9) [/math] 
2)[math]I_B = 5\ \mu A[/math]:  [math]\beta = \frac{I_C}{I_B} = \frac{(0.725 \pm 0.021) mA}{(4.862 \pm 0.121) uA} = (149 \pm 6) [/math] 
3)[math]I_B = 10\ \mu A[/math]:  [math]\beta = \frac{I_C}{I_B} = \frac{(1.391 \pm 0.052) mA}{(9.200 \pm 0.372) uA} = (151 \pm 8) [/math] 


And above values of β are in agreement with range of β from the spec sheet which is from 30 to 300. But I can not say nothing more because 1) my IC current doesn't correspond to published in data sheet. 2) My β calculation is for specific value of IB current. But in the data sheet the range of β is reported for specific values of IC and VCE.


2) What is α for the transistor? α=ICIE (10 pnts) 3) The base must always be more positive (negative) than the emitter for a npn (pnp) transistor to conduct I_C.(10 pnts) 4) For a transistor to conduct I_{C} the base-emitter junction must be forward biased.(10 pnts) 5) For a transistor to conduct I_{C} the collector-base junction must be reversed biased.(10 pnts)

Extra credit

Measure the Base-Emitter breakdown voltage. (10 pnts)


I expect to see a graph (IBvsVBE) and a linear fit which is similar to the forward biased diode curves. Compare your result to what is reported in the data sheet.


I used:

[math]R_B = (199.5 \pm 1.0)\ k\Omega [/math]
[math]R_E = (100.0 \pm 1.0)\ \Omega [/math]
[math]V_{CC} = (840 \pm 20)\ mV [/math]


Below is the table with my measurements and current calculations:

Here:

[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]

Table extra.png


And bellow is my plot for the Base-Emitter breakdown voltage

Plot extra fitted.png

The fitting line is IB[μA]=(111.7±10.61)+(0.1809±0.01634)[mV]. The intersection this line with x-axis gives the forward turn on voltage:

[math]V_{BE} = \frac{p_0}{p_1} = \frac{111.7 \pm 10.61}{0.1809 \pm 0.01634} = (617.46 \pm 80.93)[mV][/math]

Actually what we are measuring here is better to call the forward turn on voltage for base-emitter junction (Base-Emitter breakdown voltage is for reverse current measurement). From the data sheet this point (called the base-emitter saturation voltage) is 0.65 V and this point is inside my predicted values (617.46±80.93)[mV]


Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement