Difference between revisions of "Lab 13 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 86: Line 86:
  
  
Below is the table with my measurements and currents and power calculation.
+
Below is the table with my measurements:
 +
 
 +
[[File:Table 2uA 01.png | 800 px]]
 +
 
 +
 
 +
And below is my currents and power calculation:
  
 
Here:
 
Here:
Line 92: Line 97:
 
  <math>I_{B} = \frac{V_{BB}-V_B}{R_B}</math>
 
  <math>I_{B} = \frac{V_{BB}-V_B}{R_B}</math>
 
  <math>P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} </math>  
 
  <math>P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} </math>  
 +
 +
[[File:Table 2uA 02.png | 800 px]]
 +
  
  
Line 153: Line 161:
 
Bellow is my plot for the case of <math>I_B = 2 \mu A</math>
 
Bellow is my plot for the case of <math>I_B = 2 \mu A</math>
 
   
 
   
[[File:L13 2uA.png | 800 px ]]
+
[[File:L13 2uA 01.png | 800 px ]]
  
  

Revision as of 15:52, 11 March 2011

Go Back to All Lab Reports


DC Bipolar Transistor Curves

Data sheet for transistors.

Media:2N3904.pdfMedia:2N3906.pdf

2N3904 PinOuts.png2N3906 PinOuts.png


Using 2N3904 is more srtaight forward in this lab.

Transistor circuit

1.) Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.


I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:

Value Description
[math]V_{(BR)CEO} = 40\ V[/math] Collector-Base breakdown voltage
[math]V_{(BR)EBO} = 6\ V[/math] Emitter-Base Breakdown Voltage
[math]V_{(BR)CEO} = 40\ V[/math] Maximum Collector-Emitter Voltage
[math]V_{(BR)CBO} = 60\ V[/math] Maximum Collector-Emitter Voltage
[math]I_C = 200\ mA[/math] Maximum Collector Current - Continuous
[math]P = 625\ mW[/math] Transistor Power rating([math]P_{Max}[/math])
[math]h_{FE}\ min \ [/math] [math]h_{FE}\ max \ [/math] [math]I_C[/math], [math]V_{CE}[/math]
40 300 [math]I_C=0.1\ mA[/math], [math]V_{CE}=1.0\ V[/math]
70 300 [math]I_C=1\ mA[/math], [math]V_{CE}=1.0\ V[/math]
100 300 [math]I_C=10\ mA[/math], [math]V_{CE}=1.0\ V[/math]
60 300 [math]I_C=50\ mA[/math], [math]V_{CE}=1.0\ V[/math]
30 300 [math]I_C=100\ mA[/math], [math]V_{CE}=1.0\ V[/math]


2.) Construct the circuit below according to the type of transistor you have.

TF EIM Lab13a Circuit.pngTF EIM Lab13 Circuit.png


Let [math]R_E = 100 \Omega[/math].

[math]V_{CC} \lt 5 Volts[/math] variable power supply

[math]V_{BE}= 1\ V[/math].

Find the resistors you need to have

[math]I_B = 2 \mu A[/math] , [math]5 \mu A[/math] , and [math]10 \mu A[/math]

By measurements I was able to find that [math]V_{BE}= 0.6\ V[/math]. So I am going to use this value. Also let picks up [math]V_{BB}= 1.6\ V[/math]. So my current [math]I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{(1.6 - 0.6)\ V}{R_B} = \frac{1.0\ V}{R_B}[/math].

Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]



3.) Measure the emitter current [math]I_E[/math] for several values of [math]V_{CE}[/math] by changing [math]V_{CC}[/math] such that the base current [math]I_B = 2 \mu[/math] A is constant. [math]I_B \approx \frac{V_{BB}-V_{BE}}{R_B}[/math]


I used:

[math]R_1 = (197.7 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (197.5 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (99.5 \pm 0.5)\ k\Omega [/math]
[math]R_B = (R_1 + R_2 + R_3) = (494.7 \pm 3.1)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 0.5)\ Omega [/math]


Below is the table with my measurements:

Table 2uA 01.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 2uA 02.png


[math]V_{CC}[/math] [math]V_{B}[/math] [math]V_{BB}[/math] [math]V_{EC}[/math] [math]V_{E}[/math] [math]I_{E}[/math] [math]I_{B}[/math] [math]P_{max}[/math]
mV mV V mV mV mA [math]\mu A[/math] [math]\mu W[/math]
[math]41.5\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]0.0\pm 1[/math] [math]40\pm 2[/math] 0.40±0.02 2.02±0.18 0.00±0.40
[math]106.7\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]4.0\pm 1[/math] [math]100\pm 5[/math] 1.00±0.05 2.02±0.18 4.00±1.02
[math]142.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]10.0\pm 1[/math] [math]140\pm 5[/math] 1.40±0.05 2.02±0.18 14.00±1.49
[math]170.8\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]16.0\pm 1[/math] [math]170\pm 5[/math] 1.70±0.05 2.02±0.18 27.20±1.88
[math]204.9\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]22.0\pm 1[/math] [math]200\pm 5[/math] 2.00±0.05 2.02±0.18 44.00±2.29
[math]233.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]26.0\pm 1[/math] [math]240\pm 10[/math] 2.4±0.10 2.02±0.18 62.40±3.55
[math]266.2\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]28.0\pm 1[/math] [math]260\pm 10[/math] 2.60±0.10 2.02±0.18 72.80±3.84
[math]296.1\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]300\pm 10[/math] 3.00±0.10 2.02±0.18 87.00±4.20
[math]338.0\pm 0.5[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]340\pm 10[/math] 3.40±0.10 2.02±0.18 98.60±4.50
[math]406.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]400\pm 10[/math] 4.00±0.10 2.02±0.18 116.00±4.97
[math]554.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]29.0\pm 1[/math] [math]560\pm 20[/math] 5.60±0.20 2.02±0.18 162.40±8.10
[math]809.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]30.0\pm 1[/math] [math]800\pm 20[/math] 8.00±0.20 2.02±0.18 240.00±10.07
[math]1041.0\pm 2.0[/math] [math]600\pm 50[/math] [math]1.6\pm 0.05[/math] [math]30.0\pm 1[/math] [math]1000\pm 50[/math] 10.00±0.50 2.02±0.18 300.00±18.09


4.) Repeat the previous measurements for [math]I_B \approx 5 \mbox{ and } 10 \mu[/math] A. Remember to keep [math]I_CV_{CE} \lt P_{max}[/math] so the transistor doesn't burn out

V_{CC} V_B V_{BB} V_ {EC} V_ E R_E R_B I_E I_B
mV mV V mV mV [math]\Omega[/math] k[math]\Omega[/math] mA \muA


5.) Graph [math]I_C[/math] -vs- [math]V_{CE}[/math] for each value of [math]I_B[/math] and [math]V_{CC}[/math] above. (40 pnts)

Bellow is my plot for the case of [math]I_B = 2 \mu A[/math]

L13 2uA 01.png


Bellow is my plot for the case of [math]I_B = 5 \mu A[/math]


Bellow is my plot for the case of [math]I_B = 10 \mu A[/math]



6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)


Questions

  1. Compare your measured value of [math]h_{FE}[/math] or [math]\beta[/math] for the transistor to the spec sheet? (10 pnts)
  2. What is [math]\alpha[/math] for the transistor?(10 pnts)
  3. The base must always be more _________(________) than the emitter for a npn (pnp)transistor to conduct I_C.(10 pnts)
  4. For a transistor to conduct I_C the base-emitter junction must be ___________ biased.(10 pnts)
  5. For a transistor to conduct I_C the collector-base junction must be ___________ biased.(10 pnts)

Extra credit

Measure the Base-Emmiter breakdown voltage. (10 pnts)


I expect to see a graph [math](I_{B} -vs- V_{BE} )[/math] and a linear fit which is similar to the forward biased diode curves. Compare your result to what is reported in the data sheet.



Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement