|   |   | 
| Line 86: | Line 86: | 
|  | !scope="row" |<math>I_{E} = \frac{V_E}{R_E}</math> |  | !scope="row" |<math>I_{E} = \frac{V_E}{R_E}</math> | 
|  | !scope="row" |<math>I_{B} = \frac{V_{BB}-V_B}{R_B}</math> |  | !scope="row" |<math>I_{B} = \frac{V_{BB}-V_B}{R_B}</math> | 
| − | !scope="row" |<math>P_{max} = I_{C}\cdot V_{EC} = (I_E - I_B)\cdot V_{EC}</math> | + | !scope="row" |<math>P_{max} = I_{C}\cdot V_{EC} </math> | 
|  | |-   |  | |-   | 
|  | |mV || mV || V || mV || mV || <math>\Omega</math> || k<math>\Omega</math>|| mA|| <math>\mu A</math>|| <math>mW</math> |  | |mV || mV || V || mV || mV || <math>\Omega</math> || k<math>\Omega</math>|| mA|| <math>\mu A</math>|| <math>mW</math> | 
		Revision as of 05:48, 11 March 2011
Go Back to All Lab Reports
DC Bipolar Transistor Curves
Data sheet for transistors.
Media:2N3904.pdfMedia:2N3906.pdf

 
Using 2N3904 is more srtaight forward in this lab.
Transistor circuit
Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.
I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:
| Value | Description | 
| [math]V_{(BR)CEO} = 40\ V[/math] | Collector-Base breakdown voltage | 
| [math]V_{(BR)EBO} = 6\ V[/math] | Emitter-Base Breakdown Voltage | 
| [math]V_{(BR)CEO} = 40\ V[/math] | Maximum Collector-Emitter Voltage | 
| [math]V_{(BR)CBO} = 60\ V[/math] | Maximum Collector-Emitter Voltage | 
| [math]I_C = 200\ mA[/math] | Maximum Collector Current - Continuous | 
| [math]P = 625\ mW[/math] | Transistor Power rating([math]P_{Max}[/math]) | 
| [math]h_{FE}\ min \ [/math] | [math]h_{FE}\ max \ [/math] | [math]I_C[/math], [math]V_{CE}[/math] | 
| 40 | 300 | [math]I_C=0.1\ mA[/math], [math]V_{CE}=1.0\ V[/math] | 
| 70 | 300 | [math]I_C=1\ mA[/math], [math]V_{CE}=1.0\ V[/math] | 
| 100 | 300 | [math]I_C=10\ mA[/math], [math]V_{CE}=1.0\ V[/math] | 
| 60 | 300 | [math]I_C=50\ mA[/math], [math]V_{CE}=1.0\ V[/math] | 
| 30 | 300 | [math]I_C=100\ mA[/math], [math]V_{CE}=1.0\ V[/math] | 
Construct the circuit below according to the type of transistor you have.

 
Let [math]R_E = 100 \Omega[/math].
[math]V_{CC}  \lt  5 Volts[/math] variable power supply
[math]V_{BE}= 1\ V[/math].
Find  the resistors you need to have
[math]I_B = 2 \mu A[/math] , [math]5 \mu A[/math] , and  [math]10 \mu A[/math] 
By measurements I was able to find that [math]V_{BE}= 0.6\ V[/math]. So I am going to use this value. Also let picks up [math]V_{BB}= 1.6\ V[/math]. So my current [math]I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{(1.6 - 0.6)\ V}{R_B} = \frac{1.0\ V}{R_B}[/math].
Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]
Measure the emitter current [math]I_E[/math] for several values of [math]V_{CE}[/math] by changing [math]V_{CC}[/math] such that the base current [math]I_B = 2 \mu[/math] A is  constant. [math]I_B \approx \frac{V_{BB}-V_{BE}}{R_B}[/math]
| [math]V_{CC}[/math] | [math]V_{B}[/math] | [math]V_{BB}[/math] | [math]V_{EC}[/math] | [math]V_{E}[/math] | [math]R_{E}[/math] | [math]R_{B}[/math] | [math]I_{E} = \frac{V_E}{R_E}[/math] | [math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math] | [math]P_{max} = I_{C}\cdot V_{EC} [/math] | 
| mV | mV | V | mV | mV | [math]\Omega[/math] | k[math]\Omega[/math] | mA | [math]\mu A[/math] | [math]mW[/math] | 
| [math]41.5\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]0.0\pm 1[/math] | [math]40\pm 2[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 0.40±0.02 | 2.02±0.18 | 
| [math]106.7\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]4.0\pm 1[/math] | [math]100\pm 5[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 1.00±0.05 | 2.02±0.18 | 
| [math]142.0\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]10.0\pm 1[/math] | [math]140\pm 5[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 1.40±0.05 | 2.02±0.18 | 
| [math]170.8\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]16.0\pm 1[/math] | [math]170\pm 5[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 1.70±0.05 | 2.02±0.18 | 
| [math]204.9\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]22.0\pm 1[/math] | [math]200\pm 5[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 2.00±0.05 | 2.02±0.18 | 
| [math]233.0\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]26.0\pm 1[/math] | [math]240\pm 10[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 2.4±0.10 | 2.02±0.18 | 
| [math]266.2\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]28.0\pm 1[/math] | [math]260\pm 10[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 2.60±0.10 | 2.02±0.18 | 
| [math]296.1\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]29.0\pm 1[/math] | [math]300\pm 10[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 3.00±0.10 | 2.02±0.18 | 
| [math]338.0\pm 0.5[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]29.0\pm 1[/math] | [math]340\pm 10[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 3.40±0.10 | 2.02±0.18 | 
| [math]406.0\pm 2.0[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]29.0\pm 1[/math] | [math]400\pm 10[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 4.00±0.10 | 2.02±0.18 | 
| [math]554.0\pm 2.0[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]29.0\pm 1[/math] | [math]560\pm 20[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 5.60±0.20 | 2.02±0.18 | 
| [math]809.0\pm 2.0[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]30.0\pm 1[/math] | [math]800\pm 20[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 8.00±0.20 | 2.02±0.18 | 
| [math]1041.0\pm 2.0[/math] | [math]600\pm 50[/math] | [math]1.6\pm 0.05[/math] | [math]30.0\pm 1[/math] | [math]1000\pm 50[/math] | [math]100\pm 0.5[/math] | [math]494.7\pm 0.5[/math] | 10.00±0.50 | 2.02±0.18 | 
Repeat the previous measurements for [math]I_B \approx 5 \mbox{ and } 10 \mu[/math] A.  Remember to keep [math]I_CV_{CE} \lt  P_{max}[/math] so the transistor doesn't burn out
| V_{CC} | V_B | V_{BB} | V_ {EC} | V_ E | R_E | R_B | I_E | I_B | 
| mV | mV | V | mV | mV | [math]\Omega[/math] | k[math]\Omega[/math] | mA | \muA | 
|  |  |  |  |  |  |  |  |  | 
5.) Graph [math]I_C[/math] -vs- [math]V_{CE}[/math] for each value of [math]I_B[/math] and [math]V_{CC}[/math] above. (40 pnts)
6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)
Questions
- Compare your measured value of [math]h_{FE}[/math] or [math]\beta[/math] for the transistor to the spec sheet? (10 pnts)
- What is [math]\alpha[/math] for the transistor?(10 pnts)
- The base must always be more _________(________) than the emitter for a npn (pnp)transistor to conduct I_C.(10 pnts)
- For a transistor to conduct I_C the base-emitter  junction must be ___________ biased.(10 pnts)
- For a transistor to conduct I_C the collector-base  junction must be ___________ biased.(10 pnts)
Measure the Base-Emmiter breakdown voltage. (10 pnts)
I expect to see a graph [math](I_{B} -vs- V_{BE} )[/math] and a linear fit which is similar to the forward biased diode curves.  Compare your result to what is reported in the data sheet.
Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement