Difference between revisions of "Lab 10 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
The current through the circuit can be found as <math>I = \frac{V_{in}}{R_{tot}}</math>
 
The current through the circuit can be found as <math>I = \frac{V_{in}}{R_{tot}}</math>
  
where <math> R_{tot} = R  + \left|\frac{R_L \cdot \frac{1}{j\omega C}}{R_L + \frac{1}{j\omega C}} \right| = \sqrt( R  + \left(\frac{R_L}{1 + j\omega CR_L}\right)\left(\frac{R_L}{1 + j\omega CR_L}\right)^* ) = 96.9\ k\Omega + \frac{(98.7\ k\Omega)^2 }{1 + (2\pi 60)^2(2.2\ uF)^2 (98.7\ k\Omega)^2} \ k\Omega= (96.9 + 1.19)\ k\Omega = 98.1\ k\Omega</math>.
+
where <math> R_{tot} = R  + \left|\frac{R_L \cdot \frac{1}{j\omega C}}{R_L + \frac{1}{j\omega C}} \right| = \sqrt( R  + \left(\frac{R_L}{1 + j\omega CR_L}\right)\left(\frac{R_L}{1 + j\omega CR_L}\right)^* ) = 96.9\ k\Omega + \frac{(98.7\ k\Omega)^2 }{1 + (2\ \pi\ 60)^2(2.2\ uF)^2 (98.7\ k\Omega)^2} \ k\Omega= (96.9 + 1.19)\ k\Omega = 98.1\ k\Omega</math>.
  
 
And the current becomes <math>I = \frac{24\ V}{98.1\ k\Omega} = 244\ uA</math>
 
And the current becomes <math>I = \frac{24\ V}{98.1\ k\Omega} = 244\ uA</math>

Revision as of 05:48, 8 March 2011

Go Back to All Lab Reports


Lab 10 Unregulated power supply


Use a transformer for the experiment.

here is a description of the transformer.

File:TF EIM 241 transformer.pdf

File:IN5230-B-T DataSheet.pdf

Half-Wave Rectifier Circuit

1.)Consider building circuit below.

TF EIM Lab10 HW Rectifier.png

Determine the components needed in order to make the output ripple have a [math]\Delta V[/math] less than 1 Volt.

The output ripple can be found by [math]\Delta V=\frac{I\Delta t}{C}[/math]

I have used the following components and input parameters:

[math]R = 96.9\ k\Omega[/math]
[math]R_L = 98.7\ k\Omega[/math]
[math]R_{scope} = 1\ M\Omega[/math]
[math]C = 2.2\ uF[/math]

and the following input parameters:


[math]\Delta t = 17\ ms\ which\ corresponds\ to\ 60\ Hz[/math]
[math]V_{in} = 24\ V[/math]


The current through the circuit can be found as [math]I = \frac{V_{in}}{R_{tot}}[/math]

where [math] R_{tot} = R + \left|\frac{R_L \cdot \frac{1}{j\omega C}}{R_L + \frac{1}{j\omega C}} \right| = \sqrt( R + \left(\frac{R_L}{1 + j\omega CR_L}\right)\left(\frac{R_L}{1 + j\omega CR_L}\right)^* ) = 96.9\ k\Omega + \frac{(98.7\ k\Omega)^2 }{1 + (2\ \pi\ 60)^2(2.2\ uF)^2 (98.7\ k\Omega)^2} \ k\Omega= (96.9 + 1.19)\ k\Omega = 98.1\ k\Omega[/math].

And the current becomes [math]I = \frac{24\ V}{98.1\ k\Omega} = 244\ uA[/math]

So my output ripple becomes [math]\Delta V = \frac{244\ uA \cdot 17\ ms}{2.2\ uF} = [/math]


List the components below and show your instructor the output observed on the scope and sketch it below.

Full-Wave Rectifier Circuit

TF EIM Lab10 FW Rectifier.png

Determine the components needed in order to make the above circuit's output ripple have a [math]\Delta V[/math] less than 0.5 Volt.

List the components below and show your instructor the output observed on the scope and sketch it below.


Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement