Difference between revisions of "TF EIMLab3 Writeup"
(4 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
| <math>1 \times 10^{5}</math>|| <math>561 \times 10^{-12}</math>|| 17825||2837 | | <math>1 \times 10^{5}</math>|| <math>561 \times 10^{-12}</math>|| 17825||2837 | ||
|- | |- | ||
− | | || || || | + | | <math>96.4 \times 10^{3}</math>|| <math>561 \times 10^{-12}</math>|| 18490||2943 |
|- | |- | ||
− | | || || || | + | | <math>10.5 </math>|| <math>1.25 \times 10^{-6}</math>|| 76190||12126 |
|- | |- | ||
− | | || || || | + | | <math>31.3 </math>|| <math>10.3 \times 10^{-6}</math>|| 3102||494 |
|- | |- | ||
+ | | <math>2.058 \times 10^5 </math>|| <math>7.73 \times 10^{-10}</math>|| 6310||1004 | ||
|} | |} | ||
Latest revision as of 19:49, 10 February 2011
- RC Low-pass filter
1-50 kHz filter (20 pnts)
1.)Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
R | C | ||
Ohms | Farads | rad/s | Hz |
17825 | 2837 | ||
18490 | 2943 | ||
76190 | 12126 | ||
3102 | 494 | ||
6310 | 1004 |
2.)Now construct the circuit using a non-polar capacitor.
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
4.)Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
Hz | Volts | Volts | |
50 | 0.6 | 0.3 | |
100 | 0.5 | 0.18 | |
250 | 0.5 | 0.075 | |
500 | 0.45 | 0.04 | |
1000 | 0.4 | 0.017 | |
2500 | 0.28 | 0.005 | |
5056 | 0.16 | 0.005 | |
- Graph the -vs-
phase shift (10 pnts)
- measure the phase shift between and
Questions
1.)compare the theoretical and experimentally measured break frequencies. (5 pnts)
Theory | Exp | %diff |
2.) Calculate and expression for
as a function of , , and . The Gain is defined as the ratio of to .(5 pnts)
- the capacitor can be added in series with the other resistor
It looks like the voltage divider from the resistance section
To evaluate
where and
Let
- break point (cut off ) frequency
then
3.)Sketch the phasor diagram for
, , , and . Put the current along the real voltage axis. (30 pnts) 4.)Compare the theoretical and experimental value for the phase shift . (5 pnts) 5.) what is the phase shift for a DC input and a very-high frequency input?(5 pnts) 6.) calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)