Difference between revisions of "TF EIMLab3 Writeup"
Line 6: | Line 6: | ||
:<math>\omega_{break} = \frac{1}{RC}</math> | :<math>\omega_{break} = \frac{1}{RC}</math> | ||
: <math>\Rightarrow R = \frac{1}{\omega_{break} C } = \frac{1}{25 \times 10^{3} \times 9.45 \times 10^{-9}} = 4,233 \Omega</math> | : <math>\Rightarrow R = \frac{1}{\omega_{break} C } = \frac{1}{25 \times 10^{3} \times 9.45 \times 10^{-9}} = 4,233 \Omega</math> | ||
+ | |||
+ | {| border="3" cellpadding="20" cellspacing="0" | ||
+ | |R ||C || <math>\omega_B</math> || <math>\nu_B</math> | ||
+ | |- | ||
+ | | Ohms || Farads || rad/s ||Hz | ||
+ | |- | ||
+ | | <math>1 \times 10^{5}</math>|| <math>561 \times 10^{-12}</math>|| 17825||2837 | ||
+ | |- | ||
+ | | || || || | ||
+ | |- | ||
+ | | || || || | ||
+ | |- | ||
+ | | || || || | ||
+ | |- | ||
+ | |} | ||
+ | |||
2.)Now construct the circuit using a non-polar capacitor. | 2.)Now construct the circuit using a non-polar capacitor. |
Revision as of 02:25, 10 February 2011
- RC Low-pass filter
1-50 kHz filter (20 pnts)
1.)Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
R | C | ||
Ohms | Farads | rad/s | Hz |
17825 | 2837 | ||
2.)Now construct the circuit using a non-polar capacitor.
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
4.)Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
Hz | Volts | Volts | |
50 | 0.6 | 0.3 | |
100 | 0.5 | 0.18 | |
250 | 0.5 | 0.075 | |
500 | 0.45 | 0.04 | |
1000 | 0.4 | 0.017 | |
2500 | 0.28 | 0.005 | |
5056 | 0.16 | 0.005 | |
- Graph the -vs-
phase shift (10 pnts)
- measure the phase shift between and
Questions
1.)compare the theoretical and experimentally measured break frequencies. (5 pnts)
Theory | Exp | %diff |
2.) Calculate and expression for
as a function of , , and . The Gain is defined as the ratio of to .(5 pnts)
- the capacitor can be added in series with the other resistor
It looks like the voltage divider from the resistance section
To evaluate
where and
Let
- break point (cut off ) frequency
then
3.)Sketch the phasor diagram for
, , , and . Put the current along the real voltage axis. (30 pnts) 4.)Compare the theoretical and experimental value for the phase shift . (5 pnts) 5.) what is the phase shift for a DC input and a very-high frequency input?(5 pnts) 6.) calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)