Difference between revisions of "TF EIM Chapt3"

From New IAC Wiki
Jump to navigation Jump to search
Line 51: Line 51:
  
 
:<math>\left | \frac{V_R}{V_C} \right |_{MAX} = \frac{RC}{\tau} << 1 \Rightarrow V_R </math> may be ignored.
 
:<math>\left | \frac{V_R}{V_C} \right |_{MAX} = \frac{RC}{\tau} << 1 \Rightarrow V_R </math> may be ignored.
 +
 +
:<math>\Rightarrow V_{in} = V_C + V_R \approx V_C = \frac{Q}{C}</math>
 +
 +
taking the derivative with respect to time yields
 +
 +
: <math>\frac{d V_{in}}{dt} = \frac{I}{C}</math>
 +
 +
or
 +
 +
: <math>I = C \frac{d V_{in}}{dt}</math>
 +
 +
The loop theorem for V_{out} :
 +
 +
:<math>V_{out} = IR = \left ( C \frac{d V_{in}}{dt} \right ) R = RC \frac{d V_{in}}{dt}</math>
  
 
=Integrator=
 
=Integrator=

Revision as of 03:15, 9 February 2011

Differentiator circuit

Consider the effect of a low-pass filter on a rectangular shaped input pulse with a width [math]\tau[/math] and period [math]T[/math].


TF EIM PulsedRCHighpass.png


The first thing to consider is what happens to the different parts of the square pulse as it travels to the circuit.

You know that the circuit, as a high pass filter, will tend to attenuate low frequency (slow changing) voltages and not high frequency (quick changing) voltages.

This means no DC voltage values pass beyond the capacitor.

This means that points [math]a[/math] and [math]b[/math] in the pulse shown below should pass through the circuit.

TF EIM SquarePulseDifferentiated.png

The voltage changes in between point [math]a[/math] and DC are passed according to what you select for the break frequency ([math]\omega_B = \frac{1}{RC}[/math])

In the above pulse picture it was assumed that [math]\tau \gt \gt \frac{1}{\omega_B} = RC[/math] or in other words the RC network time constant is a lot smaller than the pulse width.

If the RC time constant is larger than the pulse width then you will see the voltage stay high. The rectangular pulse will be output as a square like pulse which is "sagging".


TF EIM PulsedRCHighpassSmallRC.png TF EIM PulsedRCHighpassBigRC.png
[math] RC \lt \lt \tau[/math] [math]RC \gt \gt \tau[/math]

Loop Theorem

[math]V_{in} = V_C + V_R = I X_C + I R[/math]


How does [math]V_C[/math] compare to [math]V_R[/math] ?
[math]\left | \frac{V_R}{V_C} \right | = \frac{\left | IR \right |}{\left | I X_C\right |}= \frac{R}{\left | \frac{1}{i \omega C}\right |} = \omega RC[/math]

The maximum value of [math]\omega[/math] is determined by the pulse width [math] \tau[/math] while [math]T[/math] is the period that corresponds the lowest frequency (other than DC).


[math]\left | \frac{V_R}{V_C} \right |_{MAX} = \frac{RC}{\tau}[/math]

[math]RC \lt \lt \tau[/math]

When [math]RC \lt \lt \tau[/math]


[math]\left | \frac{V_R}{V_C} \right |_{MAX} = \frac{RC}{\tau} \lt \lt 1 \Rightarrow V_R [/math] may be ignored.
[math]\Rightarrow V_{in} = V_C + V_R \approx V_C = \frac{Q}{C}[/math]

taking the derivative with respect to time yields

[math]\frac{d V_{in}}{dt} = \frac{I}{C}[/math]

or

[math]I = C \frac{d V_{in}}{dt}[/math]

The loop theorem for V_{out} :

[math]V_{out} = IR = \left ( C \frac{d V_{in}}{dt} \right ) R = RC \frac{d V_{in}}{dt}[/math]

Integrator

TF EIM PulsedRCLowpass.png

TF EIM SquarePulse.png

Forest_Electronic_Instrumentation_and_Measurement