Difference between revisions of "Lab 4 RS"
(28 intermediate revisions by the same user not shown) | |||
Line 36: | Line 36: | ||
! scope="col" width="50" | <math>\frac{V_{out}}{V_{in}}</math> | ! scope="col" width="50" | <math>\frac{V_{out}}{V_{in}}</math> | ||
|- | |- | ||
− | |0. | + | |0.5 ||12.4 ||0.48 ||0.039 |
|- | |- | ||
− | |1.0 || || || | + | |1.0 ||11.0 ||0.88 ||0.080 |
|- | |- | ||
− | |2.0 || || || | + | |2.0 ||8.0 ||1.3 ||0.162 |
|- | |- | ||
− | |3.0 || || || | + | |3.0 ||6.0 ||1.5 ||0.250 |
|- | |- | ||
− | |4.0 || || || | + | |4.0 ||4.9 ||1.6 ||0.326 |
|- | |- | ||
− | |5.0 || || || | + | |5.0 ||4.2 ||1.7 ||0.405 |
|- | |- | ||
− | |6.0 || || || | + | |6.0 ||3.7 ||1.7 ||0.459 |
|- | |- | ||
− | |7.0 || || || | + | |7.0 ||3.2 ||1.7 ||0.531 |
|- | |- | ||
− | |8.0 || || || | + | |8.0 ||3.0 ||1.75 ||0.583 |
|- | |- | ||
− | |9.0 || || || | + | |9.0 ||2.85 ||1.70 ||0.596 |
|- | |- | ||
− | |10.0 || || || | + | |10.0 ||2.60 ||1.70 ||0.654 |
|- | |- | ||
− | |11.0 || || || | + | |11.0 ||2.50 ||1.70 ||0.680 |
|- | |- | ||
− | |12.0 || || || | + | |12.0 ||2.35 ||1.70 ||0.723 |
|- | |- | ||
− | | | + | |13.0 ||2.25 ||1.70 ||0.755 |
|- | |- | ||
− | | | + | |14.0 ||2.20 ||1.70 ||0.772 |
|- | |- | ||
− | | | + | |15.0 ||2.10 ||1.70 ||0.809 |
|- | |- | ||
− | | | + | |20.0 ||2.00 ||1.75 ||0.875 |
|- | |- | ||
− | | | + | |30.0 ||1.85 ||1.75 ||0.946 |
|- | |- | ||
− | | | + | |50.0 ||1.82 ||1.78 ||0.978 |
|- | |- | ||
− | | | + | |100.0 ||1.80 ||1.80 ||1.00 |
|} | |} | ||
5. Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math> | 5. Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math> | ||
+ | |||
+ | [[File:L4 volt gain_analog m1.png | 800 px]] | ||
=phase shift (10 pnts)= | =phase shift (10 pnts)= | ||
− | #measure the phase shift between <math>V_{in}</math> and <math>V_{out}</math> | + | #measure the phase shift between <math>V_{in}</math> and <math>V_{out}</math> as a function of frequency <math>\nu</math>. Hint: you could use<math> V_{in}</math> as an external trigger and measure the time until <math>V_{out}</math> reaches a max on the scope <math>(\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))</math>. |
+ | |||
+ | ''See question 3 about my phase shift measurements'' | ||
=Questions= | =Questions= | ||
− | ==Compare the theoretical and experimentally measured break frequencies. (5 pnts)== | + | ==1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)== |
+ | |||
+ | Theoretical break frequency: <math>12.13\ \mbox{kHz}</math> | ||
+ | |||
+ | The fit line equation from the plot above is <math>\ y=-1.097+0.9857\cdot x</math>. | ||
+ | From intersection point of line with x-axis we find: | ||
+ | |||
+ | :<math>\mbox{log}(f_{exper})=\frac{1.097}{0.9857} = 1.113</math> | ||
+ | |||
+ | :<math>f_{exp} = 10^{1.113} = 12.97\ \mbox{kHz} </math> | ||
+ | |||
+ | |||
+ | The error is: | ||
+ | |||
+ | <math>Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{12.97 - 12.13}{12.13} \right|= 6.92\ %</math> | ||
− | ==Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.(5 pnts)== | + | ==2. Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>.(5 pnts)== |
We have: | We have: | ||
− | :<math>1)\ V_{in} = I \left(R+ | + | :<math>1)\ V_{in} = I \left(R+X_C\right) = I\left(R+\frac{1}{i\omega C}\right)</math> |
:<math>2)\ V_{out} = I R </math> | :<math>2)\ V_{out} = I R </math> | ||
Line 105: | Line 123: | ||
:<math>\left |\frac{V_{out}}{V_{in}} \right | = \sqrt{ \left( \frac{V_{out}}{V_{in}} \right)^* \left( \frac{V_{out}}{V_{in}} \right)} = \sqrt{\left ( \frac{i\omega RC}{1 + i\omega RC}\right ) \left ( \frac{-i\omega RC}{1 - i\omega RC}\right )} = \frac{\omega RC}{\sqrt{(1 + (\omega RC)^2}} = \frac{\omega RC}{\sqrt{(1 + (2\pi\nu RC)^2}}</math> | :<math>\left |\frac{V_{out}}{V_{in}} \right | = \sqrt{ \left( \frac{V_{out}}{V_{in}} \right)^* \left( \frac{V_{out}}{V_{in}} \right)} = \sqrt{\left ( \frac{i\omega RC}{1 + i\omega RC}\right ) \left ( \frac{-i\omega RC}{1 - i\omega RC}\right )} = \frac{\omega RC}{\sqrt{(1 + (\omega RC)^2}} = \frac{\omega RC}{\sqrt{(1 + (2\pi\nu RC)^2}}</math> | ||
− | ==Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)== | + | ==3. Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts)== |
+ | |||
+ | The experimental phase shift is <math>\ \Theta_{exper} = (-\omega\ \delta T)_{exper}</math> | ||
− | The | + | The theoretical phase shift is <math>\ \Theta_{theory}=\arctan\ \left (-\frac{1}{\omega R C}\right )</math> |
− | |||
− | ==Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>. Put the current <math>I</math> along the real voltage axis. (30 pnts)== | + | [[File:l4_phase_table_m1.png | 600 px]] |
+ | |||
+ | ==4. Sketch the phasor diagram for <math>V_{in}</math>,<math> V_{out}</math>, <math>V_{R}</math>, and <math>V_{C}</math>. Put the current <math>I</math> along the real voltage axis. (30 pnts)== | ||
[[File:l4_phase_diagram.png | 600 px]] | [[File:l4_phase_diagram.png | 600 px]] | ||
− | ==What is the phase shift <math>\theta</math> for a DC input and a very-high frequency input?(5 pnts)== | + | ==5. What is the phase shift <math>\theta</math> for a DC input and a very-high frequency input?(5 pnts)== |
Because a DC circuit doesn't have any oscillation there are no any phase shift. | Because a DC circuit doesn't have any oscillation there are no any phase shift. | ||
− | ==Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== | + | For a very high frequency input the phase shift is 0 (see plot in question 6) |
+ | |||
+ | ==6. Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== | ||
From the phasor diagram above (question 4) the angle between vectors <math>V_{in}</math> and <math>V_{out}</math> given by | From the phasor diagram above (question 4) the angle between vectors <math>V_{in}</math> and <math>V_{out}</math> given by | ||
− | <math>\Phi = \arctan \ (V_C/V_R) = =\arctan | + | <math>\Phi = \arctan \ (V_C/V_R) = =\arctan \left( \frac{I \left(\frac{1}{-\omega C}\right)}{IR} \right) = \arctan \left ( -\frac{1}{\omega RC} \right )</math> |
+ | [[File:L4 arctan.png | 600 px]] | ||
Latest revision as of 22:34, 3 February 2011
- RC High-pass filter
1-50 kHz filter (20 pnts)
1. Design a high-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed). For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
- To design low-pass RC filter I had:
So
2. Now construct the circuit using a non-polar capacitor.
3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
4. Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
0.5 | 12.4 | 0.48 | 0.039 |
1.0 | 11.0 | 0.88 | 0.080 |
2.0 | 8.0 | 1.3 | 0.162 |
3.0 | 6.0 | 1.5 | 0.250 |
4.0 | 4.9 | 1.6 | 0.326 |
5.0 | 4.2 | 1.7 | 0.405 |
6.0 | 3.7 | 1.7 | 0.459 |
7.0 | 3.2 | 1.7 | 0.531 |
8.0 | 3.0 | 1.75 | 0.583 |
9.0 | 2.85 | 1.70 | 0.596 |
10.0 | 2.60 | 1.70 | 0.654 |
11.0 | 2.50 | 1.70 | 0.680 |
12.0 | 2.35 | 1.70 | 0.723 |
13.0 | 2.25 | 1.70 | 0.755 |
14.0 | 2.20 | 1.70 | 0.772 |
15.0 | 2.10 | 1.70 | 0.809 |
20.0 | 2.00 | 1.75 | 0.875 |
30.0 | 1.85 | 1.75 | 0.946 |
50.0 | 1.82 | 1.78 | 0.978 |
100.0 | 1.80 | 1.80 | 1.00 |
5. Graph the -vs-
phase shift (10 pnts)
- measure the phase shift between and as a function of frequency . Hint: you could use as an external trigger and measure the time until reaches a max on the scope .
See question 3 about my phase shift measurements
Questions
1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)
Theoretical break frequency:
The fit line equation from the plot above is
. From intersection point of line with x-axis we find:
The error is:
2. Calculate and expression for as a function of , , and .(5 pnts)
We have:
Dividing second equation into first one we get the voltage gain:
And we are need the real part:
3. Compare the theoretical and experimental value for the phase shift . (5 pnts)
The experimental phase shift is
The theoretical phase shift is
4. Sketch the phasor diagram for , , , and . Put the current along the real voltage axis. (30 pnts)
5. What is the phase shift for a DC input and a very-high frequency input?(5 pnts)
Because a DC circuit doesn't have any oscillation there are no any phase shift.
For a very high frequency input the phase shift is 0 (see plot in question 6)
6. Calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)
From the phasor diagram above (question 4) the angle between vectors
and given by
Forest_Electronic_Instrumentation_and_Measurement Go Back to All Lab Reports