Difference between revisions of "Lab 5 RS"
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
:<math>R_L=2.5 \Omega</math> | :<math>R_L=2.5 \Omega</math> | ||
− | So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F | + | So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F}} = 172 \cdot 10^3\ \frac{\mbox{rad}}{\mbox{sec}}</math> |
:<math>f=\frac{\omega_0}{2\pi} = 27.4\ \mbox{kHz}</math> | :<math>f=\frac{\omega_0}{2\pi} = 27.4\ \mbox{kHz}</math> | ||
Line 24: | Line 24: | ||
And | And | ||
− | :<math> | + | :<math>\mbox{Q} = \frac{1}{\mbox{R}} \sqrt{\frac{\mbox{L}}{\mbox{C}}} = 2.27</math> |
==Construct the LC circuit using a non-polar capacitor== | ==Construct the LC circuit using a non-polar capacitor== |
Revision as of 21:00, 3 February 2011
- LC Resonance circuits
The LC circuit
Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz. use = 10 - 100 , R = 1k
I choose the following values for
and :So the resonance frequency is
And
Construct the LC circuit using a non-polar capacitor
Measure the Gain as a function of frequency. (25 pnts)
Compare the measured and theoretical values of the resonance frequency ( ) (10 pnts)
Questions
1.Is there a value of
in which at resonance. What is the value?(5 pnts)