Difference between revisions of "Lab 5 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
:<math>\omega_0=\frac{1}{\sqrt{\mbox{LC}}}</math>
 
:<math>\omega_0=\frac{1}{\sqrt{\mbox{LC}}}</math>
  
I choose the following values for <math>\mbox{R}</math> and <math>\mbox{C}</math>:
+
I choose the following values for <math>\mbox{L}</math> and <math>\mbox{C}</math>:
 +
 
 +
:<math>L=33\ \mu H</math>
 +
:<math>C=1.024\ \mu F</math>
 +
:<math>R=0.989\ k \Omega</math>
  
:<math>R=aaa\ \Omega</math>
 
:<math>C=bbb\ \mu F</math>
 
  
 
So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{aaa\ \Omega\ bbb\ \mu F }} = ccc\ \frac{\mbox{rad}}{\mbox{sec}}</math>
 
So the resonance frequency is <math>\omega_0=\frac{1}{\sqrt{aaa\ \Omega\ bbb\ \mu F }} = ccc\ \frac{\mbox{rad}}{\mbox{sec}}</math>
Line 24: Line 26:
  
 
[[File:L4 LC.png | 400 px]]
 
[[File:L4 LC.png | 400 px]]
 
  
 
==Construct the LC circuit using a non-polar capacitor==
 
==Construct the LC circuit using a non-polar capacitor==

Revision as of 20:53, 3 February 2011

Go Back to All Lab Reports


LC Resonance circuits

The LC circuit

TF EIM Lab5 LC.png

Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz. use [math]L[/math] = 10 - 100 [math]\mu H[/math], R = 1k [math]\Omega[/math]

[math]\omega_0=\frac{1}{\sqrt{\mbox{LC}}}[/math]

I choose the following values for [math]\mbox{L}[/math] and [math]\mbox{C}[/math]:

[math]L=33\ \mu H[/math]
[math]C=1.024\ \mu F[/math]
[math]R=0.989\ k \Omega[/math]


So the resonance frequency is [math]\omega_0=\frac{1}{\sqrt{aaa\ \Omega\ bbb\ \mu F }} = ccc\ \frac{\mbox{rad}}{\mbox{sec}}[/math]

Or [math]f=\frac{\omega_0}{2\pi} = ddd\ \mbox{kHz}[/math]


Let's estimate:

L4 LC.png

Construct the LC circuit using a non-polar capacitor

Measure the Gain [math]\equiv \frac{V_{out}}{V_{in}}[/math] as a function of frequency. (25 pnts)

Compare the measured and theoretical values of the resonance frequency ([math]\omega_{L}[/math]) (10 pnts)

Questions

1.Is there a value of [math]R[/math] in which [math]V_{out} \approx V_{in}[/math] at resonance. What is the value?(5 pnts)

The RLC cicuit

TF EIM Lab5 RLC.png

Design and construct a series LRC circuit

Measure and Graph the Gain as a function of the oscillating input voltage frequency. (25 pnts)

Measure and Graph the Phase Shift as a function of the oscillating input voltage frequency. (25 pnts)

Questions

What is the current [math]I[/math] at resonance? (5 pnts)

What is the current as [math]\nu \rightarrow \infty[/math]? (5 pnts)

Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports