Difference between revisions of "TF EIM Chapt3"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | === | + | === gain=== |
+ | Loop Theorem | ||
− | <math> | + | :<math>\Rightarrow V= I(R+X_{tot}) = I \left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )</math> |
− | + | or | |
− | + | :<math> I= \frac{V_0 e^{i \omega t}}{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )}</math> | |
+ | ;Notice | ||
+ | :When <math>\omega \approx \omega_{LC} = \frac{1}{LC}</math> then the AC signal is attenuated. | ||
− | + | Looking at the Voltage divider aspect of the circuit | |
+ | :<math>V_{AB}=V_{out} = \frac{X_{tot} }{R + X_{tot}}V_{in}</math> | ||
− | + | :<math>\left |\frac{ V_{out}} {V_{in}}\right | = \sqrt{ \left [ \frac{X_{tot} }{R + X_{tot}} \right ] \left [ \frac{X_{tot} }{R + X_{tot}} \right ]^*}</math> | |
− | |||
− | |||
+ | ::<math> = \sqrt{ \left [ \frac{X_{tot} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ] \left [ \frac{X_{tot} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]^*}</math> | ||
[[Forest_Electronic_Instrumentation_and_Measurement]] | [[Forest_Electronic_Instrumentation_and_Measurement]] |
Revision as of 05:02, 2 February 2011
gain
Loop Theorem
or
- Notice
- When then the AC signal is attenuated.
Looking at the Voltage divider aspect of the circuit