Difference between revisions of "Pair Production Rate Calculation"

From New IAC Wiki
Jump to navigation Jump to search
Line 32: Line 32:
  
 
#<math>\sigma_{brems}=xxx\ \mbox{photons/electrons/MeV/r.l}</math>
 
#<math>\sigma_{brems}=xxx\ \mbox{photons/electrons/MeV/r.l}</math>
#<math>\mbox{r.l.(Ti)} = 3.59\ \mbox{cm}</math>
+
#<math>\mbox{r.l.(Ti)} = 8.89\ \mbox{cm}</math>
 
#<math>\mbox{radiator}\ \mbox{thickness} = 12.5\ \mu m</math>
 
#<math>\mbox{radiator}\ \mbox{thickness} = 12.5\ \mu m</math>
  

Revision as of 23:52, 29 January 2011

Go Back

LINAC parameters used in calculations

1) pulse width 50 ps
2) pulse current 50 A
3) repetition rate 300 Hz
4) energy 44 MeV

Number of electrons/sec on radiator

[math] 50\ \frac{C}{sec} \times \frac{1\cdot e^-}{1.6\cdot 10^{-19}\ C} \times 50\ \mbox{ps} \times 300\ \mbox{Hz} = 0.47 \cdot 10^{13}\ \frac{e^-}{sec}[/math]

Number of photons/sec out of Ti radiator

1/2 mil of Ti

  1. [math]\sigma_{brems}=0.1\ \mbox{photons/electrons/MeV/r.l}[/math]
  2. [math]\mbox{r.l.(Ti)} = 3.59\ \mbox{cm}[/math]
  3. [math]\mbox{radiator}\ \mbox{thickness} = 12.5\ \mu m[/math]


[math]\frac{12.5\ \mu m}{3.59\ cm} = 3.48 \cdot 10^{-4}\ r.l.[/math]
[math]0.47 \cdot 10^{13} \frac{e^-}{sec} \times 0.1\ \frac{\gamma 's}{(e^- \cdot MeV \cdot r.l.)} \times 3.48 \cdot 10^{-4}\ r.l. \times 10\ MeV =1.63 \cdot 10^{9} \frac{\gamma}{sec}[/math]

Alex factor is 6.85 %

[math]1.63 \cdot 10^{9} \frac{\gamma}{sec} \cdot 6.85\ % = 1.12 \cdot 10^{8} \frac{\gamma}{sec}[/math]


1/2 mil of Al

  1. [math]\sigma_{brems}=xxx\ \mbox{photons/electrons/MeV/r.l}[/math]
  2. [math]\mbox{r.l.(Ti)} = 8.89\ \mbox{cm}[/math]
  3. [math]\mbox{radiator}\ \mbox{thickness} = 12.5\ \mu m[/math]


[math]\frac{12.5\ \mu m}{3.59\ cm} = 3.48 \cdot 10^{-4}\ r.l.[/math]
[math]0.47 \cdot 10^{13} \frac{e^-}{sec} \times 0.1\ \frac{\gamma 's}{(e^- \cdot MeV \cdot r.l.)} \times 3.48 \cdot 10^{-4}\ r.l. \times 10\ MeV =1.63 \cdot 10^{9} \frac{\gamma}{sec}[/math]

Alex factor is 6.85 %

[math]1.63 \cdot 10^{9} \frac{\gamma}{sec} \cdot 6.85\ % = 1.12 \cdot 10^{8} \frac{\gamma}{sec}[/math]

Pair production rate

out of Al converter

[math]\sigma_{pairs} = 0.5\ \frac{\mbox{barns}}{\mbox{atom}}[/math]
[math]l = 3.0\ \mu m[/math] (by varying width we can vary the yield)
[math]N_{Al} = \frac{2.70\ \frac{g}{cm^3} \times 6.02 \cdot 10^{23}\ \frac{atoms}{mol} \times 3.0\ \mu m} {26.98\ \frac{g}{mol}} = 1.81 \cdot 10^{23}\ \frac{\mbox{atoms}}{m^2}[/math]
[math]\frac {1.12 \cdot 10^{8}\ \frac{\gamma}{sec} \times \sigma_{pairs} \times N_{Al}} {f} = 3.38\ \frac{\mbox{pairs}}{\mbox{pulse}} [/math]

through 1 m of air

Assume air consists entirely from Nitrogen:

[math]\sigma_{pairs}\ (\mbox{Nitrogen}) = 0.15\ \frac{\mbox{barns}}{\mbox{atom}}[/math] 
[math]l = 1.0\ \mbox{m}[/math]
[math]N_{\mbox{Nitrogen}} = \frac{0.00125\ \frac{g}{cm^3} \times 6.02 \cdot 10^{23}\ \frac{atoms}{mol} \times 1.0\ \mbox{m}} {14.01\ \frac{g}{mol}} = 5.37 \cdot 10^{25}\ \frac{\mbox{atoms}}{m^2}[/math]
[math]\frac {1.12 \cdot 10^{8}\ \frac{\gamma}{sec} \times \sigma_{pairs} \times N_{Al}} {f} = 300\ \frac{\mbox{pairs}}{\mbox{pulse}} [/math]

Appendix

pair production cross sections in an Al target

Ref. Geant4 and Theoretical Pair Production Cross Sections for 1 MeV - 100 GeV photons in Aluminum. Vakho Makarashvili, December 18, 2007


Pair production Al.png

pair production cross sections in a Nitrogen

Ref. Photon Cross Section, Attenuation Coefficients, and Energy Absorption Coefficients From 10 keV to 100 Gev. J.H.Hubbell. Center for Radiation Research.National Bureau of Standards. Washington, D.C. 20234

Pair prodiction nitrogen.png


Here I just plotted the table above for pair production cross section in (0, 40) MeV energy region


Sigma nitrogen fitted m2.png



Go Back