Difference between revisions of "Lab 3 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 26: Line 26:
 
{| border="1"  cellpadding="12" cellspacing="0"
 
{| border="1"  cellpadding="12" cellspacing="0"
 
|<math>\nu\ [\mbox{kHz}]</math> ||<math>V_{in}\ [V]</math> || <math>V_{out}\ [V]</math> || <math>\frac{V_{out}}{V_{in}}</math>
 
|<math>\nu\ [\mbox{kHz}]</math> ||<math>V_{in}\ [V]</math> || <math>V_{out}\ [V]</math> || <math>\frac{V_{out}}{V_{in}}</math>
|<math>\delta t\ [\mu s]</math> ||<math>\phi = \omega \delta t\ [rad]</math>
 
 
|-
 
|-
|0.1 ||5.0 ||5.0 ||1.0|| ||
+
|0.1 ||5.0 ||5.0 ||1.0
 
|-
 
|-
|1.0 ||4.2 ||4.2 ||1.0||14.0 ||0.094
+
|1.0 ||4.2 ||4.2 ||1.0
 
|-
 
|-
|2.0 ||3.2 ||3.1 ||0.97||14.0 ||0.188
+
|2.0 ||3.2 ||3.1 ||0.97
 
|-
 
|-
|5.0 ||1.8 ||1.6 ||0.89||14.0 ||0.471
+
|5.0 ||1.8 ||1.6 ||0.89
 
|-
 
|-
|10.0 ||1.14 ||0.88 ||0.77||11.0 ||0.628
+
|10.0 ||1.14 ||0.88 ||0.77
 
|-
 
|-
|16.7 ||0.90 ||0.54 ||0.60||8.5 ||1.049
+
|16.7 ||0.90 ||0.54 ||0.60
 
|-
 
|-
|20.0 ||0.88 ||0.48 ||0.54||8.0 ||1.005
+
|20.0 ||0.88 ||0.48 ||0.54
 
|-
 
|-
|25.0 ||0.82 ||0.38 ||0.46||7.0 ||1.099
+
|25.0 ||0.82 ||0.38 ||0.46
 
|-
 
|-
|33.3 ||0.78 ||0.28 ||0.36||6.0 ||1.255
+
|33.3 ||0.78 ||0.28 ||0.36  
 
|-
 
|-
|50.0 ||0.76 ||0.18 ||0.24||4.5 ||1.413
+
|50.0 ||0.76 ||0.18 ||0.24
 
|-
 
|-
|100.0 ||0.75 ||0.09 ||0.12||2.0 ||1.256
+
|100.0 ||0.75 ||0.09 ||0.12
 
|-
 
|-
|125.0 ||0.74 ||0.07 ||0.095||1.8 ||1.413
+
|125.0 ||0.74 ||0.07 ||0.095
 
|-
 
|-
|200.0 ||0.75 ||0.04 ||0.053||0.9 ||1.005
+
|200.0 ||0.75 ||0.04 ||0.053
 
|-
 
|-
|333.3 ||0.76 ||0.03 ||0.039||0.25 ||0.523
+
|333.3 ||0.76 ||0.03 ||0.039
 
|-
 
|-
|200.0 ||0.76 ||0.03 ||0.039||-0.25 ||-0.785
+
|200.0 ||0.76 ||0.03 ||0.039
 
|-
 
|-
|1000.0 ||0.78 ||0.06 ||0.077||-0.25 ||-1.570
+
|1000.0 ||0.78 ||0.06 ||0.077
 
|}
 
|}
  

Revision as of 02:43, 26 January 2011

Go Back to All Lab Reports


RC Low-pass filter

1-50 kHz filter (20 pnts)

1. Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed)

To design low-pass RC filter I had:
[math]R=10.5\ \Omega[/math]  
[math]C=1.250\ \mu F[/math]
[math]\omega_b = \frac{1}{RC} = 76.2\cdot 10^3\ \frac{rad}{s}[/math]
[math]f_b = \frac{\omega_b}{2\pi} = 12.1\ \mbox{kHz}[/math]


2. Now construct the circuit using a non-polar capacitor

TF EIM Lab3.png

3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter

4. Measure the input [math](V_{in})[/math] and output [math](V_{out})[/math] voltages for at least 8 different frequencies[math] (\nu)[/math] which span the frequency range from 1 Hz to 1 MHz

[math]\nu\ [\mbox{kHz}][/math] [math]V_{in}\ [V][/math] [math]V_{out}\ [V][/math] [math]\frac{V_{out}}{V_{in}}[/math]
0.1 5.0 5.0 1.0
1.0 4.2 4.2 1.0
2.0 3.2 3.1 0.97
5.0 1.8 1.6 0.89
10.0 1.14 0.88 0.77
16.7 0.90 0.54 0.60
20.0 0.88 0.48 0.54
25.0 0.82 0.38 0.46
33.3 0.78 0.28 0.36
50.0 0.76 0.18 0.24
100.0 0.75 0.09 0.12
125.0 0.74 0.07 0.095
200.0 0.75 0.04 0.053
333.3 0.76 0.03 0.039
200.0 0.76 0.03 0.039
1000.0 0.78 0.06 0.077

5. Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]


RS lab3 voltage gain.png

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math] as a function of frequency [math]\nu[/math]. Hint: you could use [math] V_{in}[/math] as an external trigger and measure the time until [math]V_{out}[/math] reaches a max on the scope [math](\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))[/math].
See table above, columns #5 and #6.

Questions

1. Compare the theoretical and experimentally measured break frequencies. (5 pnts)

method 1. Using fitting line

Theoretical break frequency: 12.1 kHz
Experimentally measured break frequency: 9.59 kHz
 Q: The above was read off the graph?  Why not use fit results?
 A: The fit was made by using GIMP Image Editor. I do not have so much experience with ROOT. But I will try to do it. Thank you for comment.
 A1: The fit was done by ROOT
The fit line equation from the plot above is [math]\ y=0.8989-0.915\cdot x[/math].
From intersection point of line with x-axis we find:
[math]log(f_{exp})=\frac{0.8989}{0.915} = 0.982[/math]
[math]f_{exp} = 10^{0.982} = 9.59\ kHz [/math]


The error is:
[math]Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{9.59 - 12.1}{12.1} \right|= 20.7\ %[/math]

method 2. Using the -3 dB point

At the break point the voltage gain is down by 3 dB relative to the gain of unity at zero frequency. So the value of [math]\mbox{log}(V_{out}/V_{in}) = (3/20) = 0.15 [/math]. Using this value I found from plot above [math]\mbox{log}(f_b) = 1.1\ \mbox{kHz}[/math]. So [math]f_b = (10^{1.1}) = 12.6\ \mbox{kHz}[/math]. The error in this case is 4.1 %.


2. Calculate and expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math]. The Gain is defined as the ratio of [math]V_{out}[/math] to [math]V_{in}[/math].(5 pnts)

We have:

[math]1)\ V_{in} = I\left(R+R_C\right) = I\left(R+\frac{1}{i\omega C}\right)[/math]
[math]2)\ V_{out} = I \left(\frac{1}{i\omega C}\right) [/math]


Dividing second equation into first one we get the voltage gain:

[math]\ \frac{V_{out}}{V_{in}} = \frac{I \left(\frac{1}{i\omega C}\right)}{I\left(R+\frac{1}{i\omega C}\right)} = \frac{\left(\frac{1}{i\omega C}\right)}{\left(R+\frac{1}{i\omega C}\right)} = \frac{1}{1+i\omega RC}[/math]


And we are need the real part:

[math]\left |\frac{V_{out}}{V_{in}} \right | = \sqrt{ \left( \frac{V_{out}}{V_{in}} \right)^* \left( \frac{V_{out}}{V_{in}} \right)} = \sqrt{\left ( \frac{1}{1+i\omega RC}\right ) \left ( \frac{1}{1-i\omega RC}\right )} = \frac{1}{\sqrt{(1 + (\omega RC)^2}} = \frac{1}{\sqrt{(1 + (2\pi \nu RC)^2}}[/math]


3. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. Put the current [math]I[/math] along the real voltage axis. (30 pnts)

Phase diagram m.png

4. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)

The experimental phase shift is [math]\ \Theta_{exper} = (\omega\ \delta T)_{exper}[/math]
The theoretical phase shift is [math]\ \Theta_{theory}=\mbox{arctan}(\omega RC)[/math]


Phase table m1.png

5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)

6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)

Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports