Difference between revisions of "Geometry (25 MeV LINAC exit port)"

From New IAC Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
=25 MeV geometry=
 
=25 MeV geometry=
  
 +
==geometry calculation==
  
 
{| border="1" cellpadding="20" cellspacing="0"
 
{| border="1" cellpadding="20" cellspacing="0"
Line 48: Line 49:
 
|}
 
|}
  
 
+
==geometry pictures==
==critical angle==
 
 
 
<math>\Theta_C = \frac{m_ec^2}{E_{beam}} = \frac{0.511\ MeV}{25\ MeV} = 1.17\ ^o</math><br>
 
 
 
==kicker angle==
 
 
 
  <math>\Delta_1 = 286\ cm\ *\ \tan(1.17^o) = 5.84\ cm</math> <br>
 
  <math>x^2+x^2 = 5.84^2\ cm \ \ \Rightarrow\ \  x = 4.13\ cm
 
  \Rightarrow\ \ \tan^{-1}\left(\frac{4.13}{286}\right) = 0.827\ ^o</math><br>
 
 
 
==geometry (<math> \Theta_c/2</math>)==
 
 
 
===collimator center position===
 
 
 
  <math>286\ cm \cdot \tan (0.827) = 4.13\ cm</math>  (wall 1)<br>
 
  <math>(286 + 183)\ cm \cdot \tan (0.827) = 6.77\ cm</math>  (wall 2)
 
 
 
===collimator diameter===
 
 
 
  <math>286\ cm \cdot \tan (1.17/2) = 2.92\ cm</math>  (wall 1)<br>
 
  <math>(286 + 183)\ cm \cdot \tan (1.17/2) = 4.79\ cm</math>  (wall 2)
 
 
 
===collimator critical angle===
 
 
 
  <math> AB = AC - BD/2 = (4.13 - 2.92/2)\ cm = 2.67\ cm </math><br>
 
  <math> A_1D_1 = A_1C_1 + B_1D_1/2 = (6.77 + 4.79/2)\ cm = 9.165\ cm </math><br>
 
  <math>\bigtriangleup BED_1  \Rightarrow \tan (\alpha) = \frac{(9.165 - 2.67)\ cm}{183\ cm} \Rightarrow \alpha = 2.033^o</math>:
 
 
 
===minimal distance from the wall (<math> \Theta_c/2</math>)===
 
 
 
  <math>\bigtriangleup FAB  \Rightarrow FA = \frac{AB}{\tan (2.033^o)} = \frac{2.67\ cm}{\tan (2.033^o)} = 75\ cm </math>
 
 
 
==geometry (<math> \Theta_c/4</math>)==
 
 
 
===collimator center position===
 
 
 
  <math>286\ cm \cdot \tan (0.827) = 4.13\ cm</math>  (wall 1)<br>
 
  <math>(286 + 183)\ cm \cdot \tan (0.827) = 6.77\ cm</math>  (wall 2)
 
 
 
===collimator diameter===
 
 
 
  <math>286\ cm \cdot \tan (1.17/4) = 1.46\ cm</math>  (wall 1)<br>
 
  <math>(286 + 183)\ cm \cdot \tan (1.17/4) = 2.39\ cm</math>  (wall 2)
 
 
 
===collimator critical angle===
 
 
 
  <math> AB = AC - BD/2 = (4.13 - 1.46/2)\ cm = 3.4\ cm </math><br>
 
  <math> A_1D_1 = A_1C_1 + B_1D_1/2 = (6.77 + 2.39/2)\ cm = 7.965\ cm </math><br>
 
  <math>\bigtriangleup BED_1  \Rightarrow \tan (\alpha) = \frac{(7.965 - 3.4)\ cm}{183\ cm} \Rightarrow \alpha = 1.429^o</math>:
 
 
 
===minimal distance from the wall (<math> \Theta_c/4</math>)===
 
 
 
  <math>\bigtriangleup FAB  \Rightarrow FA = \frac{AB}{\tan (1.429^o)} = \frac{3.4\ cm}{\tan (1.429^o)} = 136\ cm </math>
 
 
 
==Funny pictures...==
 
  
 
===how it looks 1 (<math> \Theta_c/2</math>, box 3"x4" and then pipe 4")===
 
===how it looks 1 (<math> \Theta_c/2</math>, box 3"x4" and then pipe 4")===

Revision as of 05:36, 13 June 2010

Go Back

Minimum accelerator energy to run experiment

Min energy.png

The minimum energy of accelerator (MeV) is limited by fitting the collimator ([math]r_2[/math]) into the hole ([math]R = 8.73\ cm[/math])

[math]x_2 + r_2 = R[/math]

1) Assuming the collimator diameter is [math]\Theta_C[/math]:

[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
       \frac{1}{2}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 33.1\ MeV  [/math]

2) Assuming the collimator diameter is [math]\Theta_C/2[/math]:

[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
       \frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{2}\ \frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 26.3\ MeV  [/math]

3) Assuming the collimator diameter is [math]\Theta_C/4[/math]:

[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
       \frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{4}\ \frac{0.511}{E_{min}}\right) = 8.73 \Rightarrow E_{min} = 22.8\ MeV  [/math]

4) In general:

Plot energy collimatorsize.jpeg

25 MeV geometry

geometry calculation

collimator diameter [math]\Theta_{critical}[/math] [math]\Theta_{kicker}[/math] [math]\alpha_{collimator}[/math] [math]AC[/math] [math]A_1C_1[/math] [math]BD[/math] [math]B_1D_1[/math]
[math]\frac{\Theta_{critical}}{2}[/math] [math]1.17^o[/math] [math]0.83^o[/math] [math]2.03^o[/math] 4.13 6.78 2.92 4.79
[math]\frac{\Theta_{critical}}{4}[/math] [math]1.17^o[/math] [math]0.82^o[/math] [math]1.43^o[/math] 4.13 6.78 1.46 2.40

geometry pictures

how it looks 1 ([math] \Theta_c/2[/math], box 3"x4" and then pipe 4")

File:Vacuum pipe collimator .png

how it looks 2 ([math] \Theta_c/4[/math], box 3"x4" and then pipe 4")

File:Vacuum pipe collimator .png


Go Back