Difference between revisions of "Geometry (44 MeV LINAC exit port)"
Jump to navigation
Jump to search
Line 48: | Line 48: | ||
<math>(286 + 183)\ cm \cdot \tan (0.335) = 2.74\ cm</math> (wall 2) | <math>(286 + 183)\ cm \cdot \tan (0.335) = 2.74\ cm</math> (wall 2) | ||
− | == | + | ==collimator critical angle== |
AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm<br> | AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm<br> | ||
Line 57: | Line 57: | ||
<math> \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o</math> | <math> \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o</math> | ||
− | |||
==minimal distance from the wall== | ==minimal distance from the wall== |
Revision as of 05:49, 25 May 2010
Some measurements of 90 experimental degree exit port
Critical angle and displacement calculations
Kicker angle and displacement calculations
1 foot = 30.48 cm
accelerator's side wall
detector's side wall
Off-axis collimation geometry
Vacuum pipe
collimator location
1) center position
(wall 1)
(wall 2)
2) assume diameter is
(wall 1)
(wall 2)
collimator critical angle
AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm
A1D1 = A1C1 + B1D1/2 = (3.85 + 2.74/2) cm = 5.22 cm
ED1 = A1D1 - AB = (5.22 - 1.52) cm = 3.70 cm
from triangle
: