Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
2. Pulse# = ReadOut# = Entry# = Event#  
 
2. Pulse# = ReadOut# = Entry# = Event#  
  
<br>[[File:FC_data_23.png]] <br>
+
[[File:FC_data_23.png]]
    [[File:FC_plot_2_4.png]]<br>
+
[[File:FC_plot_2_4.png]]
  
 
<br><br>Some examples of ADC mean value distribution. Here are:<br>
 
<br><br>Some examples of ADC mean value distribution. Here are:<br>
 
1. x axis: ADC mean value for one pulse<br>
 
1. x axis: ADC mean value for one pulse<br>
 
2. y axis: number of pulse w/ that ADC mean value<br>
 
2. y axis: number of pulse w/ that ADC mean value<br>
[[File:1477.png]] [[File:1473.png]]<br>
+
[[File:1477.png]][[File:1473.png]]<br>
[[File:1461.png]] [[File:1465.png]]<br>
+
[[File:1461.png]][[File:1465.png]]<br>
  
 
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field)  and ADC (horizontal axis).
 
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field)  and ADC (horizontal axis).

Revision as of 06:14, 28 March 2010

Go Back

For each beam pulse:

[math] ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};[/math]

For distribution over all beam pulses:

[math] ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};[/math]
[math] ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#

FC data 23.png FC plot 2 4.png



Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
1477.png1473.png
1461.png1465.png

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).

Far.jpg

Go Up