Difference between revisions of "Forest AngMomRecoupling"
Jump to navigation
Jump to search
(Created page with ' <math>\Psi^{J}_{M} = \sum_{m_1,m_2}</math>') |
|||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | The recoupling of two subsystems <math>\psi</math> with angular momenta <math>j_1</math> and <math>j_2</math> to a new system<math> \Psi</math> with total angular momentum <math>J</math> is written as | ||
− | <math>\Psi^{J}_{M} = \sum_{m_1,m_2}</math> | + | <math>\Psi^{J}_{M} = \sum_{m_1,m_2} C^{j_1,j_2,J}_{m_1,m_2,M} \psi^{j_1}_{m_1} \psi^{j_2}_{m_2}</math> = expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent |
+ | |||
+ | |||
+ | <math>C^{j_1,j_2,J}_{m_1,m_2,M}</math> : Clebsch-Gordon Coefficient | ||
+ | |||
+ | <math>C^{1,\frac{1}{2},\frac{3}{2}}_{1,\frac{1}{2},\frac{3}{2}}=1</math> | ||
+ | |||
+ | <math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math> | ||
+ | |||
+ | <math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{0,\frac{1}{2},\frac{1}{2}}= \frac{2}{\sqrt{3}}</math> | ||
+ | |||
+ | <math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{2}{\sqrt{3}}</math> | ||
+ | |||
+ | <math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{0,\frac{1}{2},\frac{1}{2}}= -\frac{1}{\sqrt{3}}</math> | ||
+ | |||
+ | |||
+ | <math>\Gamma_1 = \int_0^{x_o} g_1(x,Q^2) dx</math> | ||
+ | |||
+ | <math>g_1 = \frac{F_1}{1+\gamma^2} (A_1+\gamma A_2)</math> | ||
+ | |||
+ | <math>\sigma \propto |M_{if}|^2</math> | ||
+ | |||
+ | <math>M_{fi} = <\Psi_f | H_{int} | \Psi_i></math> | ||
+ | |||
+ | <math>A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = \frac{\frac{1}{3} - 1}{\frac{1}{3} + 1} = -1/2</math> | ||
+ | |||
+ | |||
+ | [http://wiki.iac.isu.edu/index.php/Forest_Classes] [[ Forest_Classes]] |
Latest revision as of 21:03, 11 January 2010
The recoupling of two subsystems
with angular momenta and to a new system with total angular momentum is written as= expansion of the systems total angular momentum in terms of the uncoupled original basis states of each individual constituent
: Clebsch-Gordon Coefficient