Difference between revisions of "Forest AngMomRecoupling"

From New IAC Wiki
Jump to navigation Jump to search
Line 11: Line 11:
  
  
<math>\sigma \prop |M_{if}|^2</math>
+
<math>\sigma \equiv |M_{if}|^2</math>
  
 
<math>M_{fi} = <\Psi_f | H_{int} | \Psi_i></math>
 
<math>M_{fi} = <\Psi_f | H_{int} | \Psi_i></math>
  
<math>A = \frac{\sigma_{\frac{1}{2} - \sigma_{\frac{3}{2}}{\sigma_{\frac{1}{2} + \sigma_{\frac{3}{2}}</math>
+
<math>A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}</math>

Revision as of 22:42, 8 January 2010

The recoupling of two subsystems ψ with angular momenta j1 and j2 to a new systemΨ with total angular momentum J is written as

ΨJM=m1,m2Cj1,j2,Jm1,m2,Mψj1m1ψj2m2


Cj1,j2,Jm1,m2,M : Clebsch-Gordon Coefficient

C1,12,321,12,32=1

C1,12,321,12,12=13


σ|Mif|2

Mfi=<Ψf|Hint|Ψi>

A = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}