Difference between revisions of "Electric QuadrupoleMoment Forest NuclPhys I"
Jump to navigation
Jump to search
Line 27: | Line 27: | ||
<math>\Psi (r) = \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | <math>\Psi (r) = \int \frac{\rho (r^')}{|\vec{r} - \vec{r^'}|}</math> | ||
+ | |||
+ | Since | ||
+ | |||
+ | <math>\frac{1}{|\vec{r} - \vec{r^'}|} = 4\pi {\Sigma_{l=0}}^{\infty} {\Sigma_{m=-l}}^{l} \frac{1}{2l + 1} \frac{{r{<}^l}{{r{>}^{lm}} {Y_{lm}}^* ({\theta}^' {\psi}^'){Y_{l}} (\theta \psi)</math> | ||
+ | |||
+ | <math>\frac{{r{<}^l}{{r{>}^{lm}}</math> | ||
+ | |||
+ | <math>r_< = |\vec{r}|</math> if <math>|\vec{r}|<|\vec{r^'}|</math> | ||
+ | |||
+ | <math>r_< = |\vec{r^'}|</math> if <math>|\vec{r^'}|<|\vec{r}|</math> | ||
+ | |||
+ | |||
+ | <math>r_> = |\vec{r}|</math> if <math>|\vec{r}|>|\vec{r^'}|</math> | ||
+ | |||
+ | <math>r_> = |\vec{r^'}|</math> if <math>|\vec{r^'}|>|\vec{r}|</math> | ||
[[Forest_NucPhys_I]] | [[Forest_NucPhys_I]] |
Revision as of 04:51, 7 April 2009
Electric Quadrupole Moment of a Nucleus
Pages 104-111
As in the dipole calculation we assume that the object is in a state such that its maximum total angular momentum is along the z-axis.
or
then
From definition of quadrupole moment for a single charged object/particle.
The origin of this comes from electron-statics.
You expand the electric potential in terms of spherical harmonics.
because
\vec{E} = -\vec{\nabla} \Psi (r)
Since
if
if
if
if