Difference between revisions of "Big Red"
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | |||
== Specs: == | == Specs: == | ||
Line 26: | Line 25: | ||
Magnetic force: <math>F=e*v*B</math> | Magnetic force: <math>F=e*v*B</math> | ||
− | The radius of the arc can be through: <math>( | + | The radius of the arc can be through: <math>(m*v^2)/R=e*v*B</math> |
giving: <math>R=m*v/e*B</math> | giving: <math>R=m*v/e*B</math> | ||
− | The length of the circular arc is S and the deflection angle is found as: | + | The length of the circular arc is S and the deflection angle is found as: sin(θ)=S/R |
− | For small θ, and large R, the arc length S will be approx L, giving: | + | For small θ, and large R, the arc length S will be approx L, giving: sin(θ)=L/R=L*e*B/m*v |
− | Giving | + | Giving θ=sin^(-1)(c*B*L/p) |
− | The displacement is found as: | + | The displacement is found as: d=R-R*cos(θ)=m*v/e*B*(1-cos(θ)) |
− | Table: Data for B=0. | + | Table: Data for B=0.0078 T. |
{| border="1" cellpadding="2" | {| border="1" cellpadding="2" | ||
!width="70"|Momentum | !width="70"|Momentum | ||
Line 50: | Line 49: | ||
|P (MeV)||R (m)||θ (radians)||θ (degrees)||d (cm) | |P (MeV)||R (m)||θ (radians)||θ (degrees)||d (cm) | ||
|- | |- | ||
− | |1|| | + | |1||0.43||0.70||40.02||10.01 |
|- | |- | ||
− | |2|| | + | |2||0.86||0.33||18.76||4.54 |
|- | |- | ||
− | |3|| | + | |3||1.28||0.22||12.38||2.98 |
|- | |- | ||
− | |4|| | + | |4||1.71||0.16||9.25||2.22 |
|- | |- | ||
− | |5|| | + | |5||2.14||0.13||7.39||1.78 |
|- | |- | ||
− | |6|| | + | |6||2.57||0.11||6.15||1.48 |
|- | |- | ||
− | |7|| | + | |7||2.99||0.09||5.27||1.27 |
|- | |- | ||
− | |8|| | + | |8||3.42||0.08||4.61||1.11 |
|- | |- | ||
− | |9|| | + | |9||3.85||0.07||4.10||0.98 |
|- | |- | ||
− | |10|| | + | |10||4.28||0.06||3.69||0.89 |
|- | |- | ||
− | |11|| | + | |11||4.70||0.06||3.35||0.80 |
|- | |- | ||
− | |12|| | + | |12||5.13||0.05||3.07||0.74 |
|- | |- | ||
− | |13|| | + | |13||5.56||0.05||2.84||0.68 |
|- | |- | ||
− | |14|| | + | |14||5.99||0.05||2.63||0.63 |
|- | |- | ||
− | |15|| | + | |15||6.41||0.04||2.46||0.59 |
|- | |- | ||
− | |16|| | + | |16||6.84||0.04||2.30||0.55 |
|} | |} | ||
Latest revision as of 21:20, 15 May 2009
Specs:
TESLA ENGINEERING: 7 Degree Bend Angle Dipole
Current:
Resistance:
Voltage:
Water Flow:
CALCULATIONS
Calculating the Magnetic Field Needed:
Lorentz Force equation: F=q(v×B)
Electron moves through the magnetic field B accelerated by force F proportional to the component of velocity perpendicular to the field B and velocity v. Moves with constant kinetic energy and speed due to the fact that the magnetic field never does work on the particle since the always moves perpendicular to the force.
Magnetic force:
The radius of the arc can be through:
giving:
The length of the circular arc is S and the deflection angle is found as: sin(θ)=S/R
For small θ, and large R, the arc length S will be approx L, giving: sin(θ)=L/R=L*e*B/m*v
Giving θ=sin^(-1)(c*B*L/p)
The displacement is found as: d=R-R*cos(θ)=m*v/e*B*(1-cos(θ))
Table: Data for B=0.0078 T.
Momentum | Radius of Curvature | Bend Angle | Bend Angle | Displacement @ end of magnet |
---|---|---|---|---|
P (MeV) | R (m) | θ (radians) | θ (degrees) | d (cm) |
1 | 0.43 | 0.70 | 40.02 | 10.01 |
2 | 0.86 | 0.33 | 18.76 | 4.54 |
3 | 1.28 | 0.22 | 12.38 | 2.98 |
4 | 1.71 | 0.16 | 9.25 | 2.22 |
5 | 2.14 | 0.13 | 7.39 | 1.78 |
6 | 2.57 | 0.11 | 6.15 | 1.48 |
7 | 2.99 | 0.09 | 5.27 | 1.27 |
8 | 3.42 | 0.08 | 4.61 | 1.11 |
9 | 3.85 | 0.07 | 4.10 | 0.98 |
10 | 4.28 | 0.06 | 3.69 | 0.89 |
11 | 4.70 | 0.06 | 3.35 | 0.80 |
12 | 5.13 | 0.05 | 3.07 | 0.74 |
13 | 5.56 | 0.05 | 2.84 | 0.68 |
14 | 5.99 | 0.05 | 2.63 | 0.63 |
15 | 6.41 | 0.04 | 2.46 | 0.59 |
16 | 6.84 | 0.04 | 2.30 | 0.55 |