- Poisson's Equation
- ∇2ϕ(→ξ)=−ρϵ0=−eϵ0δ(→ξ)
Fourier Transform of Poisson's Equation
- 1(2π)3/2∫e−i→k⋅→ξ∇2ϕ(→ξ)dV=−1(2π)3/2eϵ0∫e−i→k⋅→ξδ(→ξ)dV
- 1(2π)3/2∫e−i→k⋅→ξ→∇⋅(→∇ϕ(→ξ))dV=−e(2π)3/2ϵ0(1)
Product rule for dervatives
- 1(2π)3/2∫{→∇⋅(e−i→k⋅→ξ→∇ϕ)−(→∇e−i→k⋅→ξ)⋅(→∇ϕ)}dV=−e(2π)3/2ϵ0(1)
Gauss' Theorem:
- ∫→∇⋅(e−i→k⋅→ξ→∇ϕ)dV=∮Se−i→k⋅→ξ→∇⋅d→A
Definition of derivative:
- (→∇e−i→k⋅→ξ)⋅(→∇ϕ)=→∇⋅(ϕ→∇e−i→k)−ϕ∇2e−i→k⋅→ξ
Substituting
1(2π)3/2{∮Se−i→k⋅→ξ→∇ϕ⋅d→A−∫→∇⋅(ϕ→∇e−i→k⋅→ξ)dV+∫ϕ∇2e−i→k⋅→ξdV}=−e(2π)3/2ϵ0
Gauss' Low:
∫→∇⋅(ϕ→∇e−i→k⋅→ξ)dV=∮Sϕ→∇e−ikξ⋅d→A
1(2π)3/2{∮S{e−i→k⋅→ξ→∇ϕ−ϕ→∇e−i→k⋅→ξ}⋅d→A+∫ϕ∇2e−i→k⋅→ξdV}=−e(2π)3/2ϵ0
1(2π)3/2∫ϕ(−ik)(−ik)e−i→k⋅→ξdV=−e(2π)3/2ϵ0
−k21(2π)3/2∫ϕ(ξ)e−i→k⋅→ξdVxi=−e(2π)3/2ϵ0
−k2ϕ(k)=−e(2π)3/2ϵ0
1.) Coulomb ϕ(k)=e(2π)3/2ϵ01k2 = potential in "k"(momentum) space
To find the potential in "coordinate" (ξ) space just inverse transform
- ϕ(ξ)=1(2π)3/2∫e+i→k⋅→ξϕ(k)dVk
- =1(2π)3/2∫ei→k⋅→ξe2π)3/2ϵ01k2dVk
- =e(2π)3ϵ0∫ei→k⋅→ξk2dVk
- dVk=k2sinθkdθkdϕkdk
- =e(2π)3ϵ0∫02πdϕk∫0πdθk∫0∞dk×k2sinθkei→k⋅→ξ
- =e(2π)2ϵ0∫0π∫0∞sinθkeikξcosθkk2dk
u=cosθ
du=sinθdθ
- ϕ(ξ)=e4π2ϵ0∫0infty∫−11eikξuk2duk2dk
- =e4π2ϵ0∫0inftyeikξ−e−ikξikξdk
- =e4π2ϵ01iξ(iπ)=e4π2ϵ01ξ
- =\frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{|\vec{r} - \vec{r}^'|} = Coulomb potential
- 2) Nuclear potential
Consider the force field generated by a point source (nucleon) at location →r from the origin of a coordinate system.
300px
Assume a particle of mass m is e charged to generate the field (In Coulomb force particle was m=o photon).
Definition of relativistic Energy:
E2=(mc2)2+(cp)2
In terms of Hamiltonian
−ℏd2dt2ϕ(→r)=[(mc2)2+(cℏ→∇i)2]ϕ(r)
In a static case
[(mc2)2−c2ℏ2∇2]ϕ(r)=0
[∇2−(mcℏ)2]ϕ(r)=0
Lets μ=mcℏ=(140MeVc2)c6.6×10−16eV⋅s(106eVMeV)
- =2.1×1023(3×108m)(10−15mfm)=0.7fm(200MeVfm)=140MeV
- ℏc=(6.6×10−16eV⋅s)(3×108ms)(1015fmm)(1MeV106eV)=198MeV⋅fm≈200MeV⋅fm
- μ=mc2ℏc=mc2200MeV⋅fm ⟹ if mc2≈200MeV then interaction length ∼1fm.
With the source term
- [{\nabla}^2 - {\mu}^2]\phi(\xi) = -{{\xi}_0}^' \delta(\xi)
As seen before for Coulomb force
- \frac{1}{(2\pi)^{3/2}} \int e^{-ik \xi} [{\nabla}^2 - {\mu}^2] \phi (\xi) dV = -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \delta (\xi) dV
- [-k^2 -{\mu}^2]\phi(\vec{k}) = -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}}
- \Longrightarrow \phi(\vec{k}) = \frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \frac{1}{k^2 + {\mu}^2}
- \phi(\vec{\xi}) = \frac{1}{(2 \pi)^{3/2}} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{(2 \pi)^{3/2}} \frac{{{\xi}_0}^'}{k^2 + {\mu}^2} dV_k : inverse fourier transform
- = \frac{{{\xi}_0}^'}{(2\pi)^3} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{k^2 + {\mu}^2} k^2 sin\theta d\theta d\phi dk
- \phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \int \frac{e^{i\vec{k} \cdot \vec{\xi}}}{(k^2 + {\mu}^2)} k^2 d[cos\theta] (2\pi) dk
- = \frac{{{\xi}_0}^'}{(2\pi)^2} {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} {{\int}_0}^{\pi} e^{ik\xi cos\theta} d[cos\theta] dk
- = \frac{{{\xi}_0}^'}{(2\pi)^2} {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} dk \frac{e^{ik\xi \mu}}{ik\xi} {|_{-1}}^1
- = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{i\xi} {{\int}_0}^{\infty} \frac{k}{k^2 + {\mu}^2} (e^{ik\xi} - e^{-ik\xi})
- = \frac{{{\xi}_0}^'}{(2\pi)^2}\frac{1}{i\xi} {{\int}_{-\infty}}^{\infty} \frac{e^{ik\xi}kdk}{k^2 + {\mu}^2}
- ∫−∞∞eikξkdkk+iμk−iμ=iπe−μξ
- \phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu \xi}}{\xi}
⟹
- \phi(\vec{r}) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{|\vec{r} - {\vec{r}}^'|}
- {\phi}_{EM}(\vec{r}) = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}
Coupling constants are:
??????????????????????????????????
??????????????????????????????????
- Summary
There are now at least two forces which act between Nucleons, the Coulomb force and the Nucleon force. We can write the force in terms of a potential
- V_{EM} = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}
- V_{Nuc} = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu |\vec{r} - {\vec{r}}^'|}}{|\vec{r} - {\vec{r}}^'|}
- V_{tot} = \frac{1}{4\pi} \left \{ \frac{Q_1 Q_2}{\epsilon_0 e } - \frac{{\xi}_0}{\pi} e^{-\mu |\vec{r} - {\vec{r}}^'|} \right \} \frac{1}{|\vec{r} - {\vec{r}}^'|}
- μ=mπcℏ=1R∼(1.5fm)−1
- C.) Deuteron
- (H12), (D2), (d) = a proton-neutron bound state
General properties: L=0 - orbital angular momentum
- Jπ=1+ - (Nuclear spin)
√r2=2.095fm - Mean radius.
B.E.=2.2246MeV - Binding energy.
- Non-relativistic Schrodiger solution
- B.E.=2.2246MeV<<1.8GeVm(H2)c2
⟹ weakly bound system
Instead of Dirac equation try 3-D Square Well Schrod. Eq. approximation for Deuteron wavefunction.
350px
V(r)=−V0 when r≤R=2.2
V(r)=0 r>R
Assume ψ=Y00V(r)r : No angular dependence, only radial dependence.
- Schrod. Equation
−ℏ22m∇2ψ+V(r)ψ=Eψ
∇2=1r2∂∂r(r2∂∂r)+1r2sinθ∂∂θ(sinθ∂∂θ)+1r2sin2θ∂2∂ϕ2
−ℏ22mY001r2∂∂rr2∂(U(r)/r)∂r+1r2sinθU(r)r(∂∂θsinθ∂Y00∂θ)
+U(r)r3sin2θ∂2∂ϕ2Y00+V(r)Y00U(r)r=EU(r)r
1r2∂∂rr2∂∂rU(r)r=1r2∂∂rr2[1r∂U(r)r−U(r)r2]
=1r2[∂U(r)∂r+r∂2U(r)∂r2−2rU(r)r2−r2r2∂U(r)∂r−r2U(r)−2r3]
=1r∂2U(r)∂r2+1r2∂U(r)∂r−1r2∂U(r)∂r−2U(r)r2+2U(r)r2
=1r∂2U(r)∂r2
U(r)r3sinθ(∂∂θsinθ∂∂θ)Y00=U(r)r3sinθl(l+1)Y00
- =U(r)r3sinθ[∂∂θsinθ∂∂θ]1√4π=0
U(r)r3sinθ∂2∂ϕ2Y00=0 : Y00=1√4π
- Schrod. Equation becomes
−ℏ22mY00r∂2U(r)∂r2+V(r)Y00U(r)r=EU(r)Y00r
⟹ for r≤R : V(r)=−V0
∂2U(r)∂r2+2mℏ2(E+V)U(r)=0
for r>R : V(r)=0
∂2U(r)∂r2+2mℏ2EU(r)=0
File:ImageTF 1.jpg
- ψI
∂2UI(r)∂r2+k12U(r)=0 : k12=2mℏ2(E+V)
⟹ UI(r)=Asin(k1r)+Bcos(k1r) : spring simple harmonic motion
Boundary condition:
- ψI(r=0)=0 ⟹ B=0
- ψII
∂2UII(r)∂r2+k22U(r)=0 : k22=2mℏ2E<0
E<0 for bound states. Taking out " - " sign in k22
∂2UII(r)∂r2−k22U(r)=0
New definition of k22 : k22=2mℏ2|E|
⟹ UII(r)=Ce−k2r+Dek2r
Boundary condition:UII(r=∞) - finite ⟹ D=0
UI(r)=Asin(k1r)
UII(r)=Ce−k2r
- Bounding condition
UI(r=R)=UII(r=R)
∂UI∂r∣r=R=∂UII∂r∣r=R
⟹ Asin(k1R)=Ce−k2R
- Ak1cos(k1R)=−Ck2e−k2R
Dividing two equations ⟹
- tan(k1R)k1=−1k2
⟹ tan(k1R)=−k1k2=−√2mℏ2(V+E)2mℏ2|E|
But E<0 for bound states
tan(k1R)=−√(V−|E|)|E|=−X=−k1k2
k1R=Xk2R=Xβ
−X=tan(βX)
Solving the ??? 59 eqution:
- X=−tan(βX)
βX=k1R ⟹ β=k1XR=k2R=√2m|E|ℏ2R
m = reduced mass
β=√2(938.982MeV)|E|(ℏc)2R :
- :=√(938.98)MeV(2.224MeV)(197.3⋅MeV⋅fm)2R
- =√(938.98)⋅(2.224)MeV2(197.3)2MeV2⋅fm2(2.095fm)
- =0.4853
|E|=|−2.224MeV|
Find X s.t. X=−tan(0.4853X)
Using ?? 59 of graphing ⟹ X=3.91=k1k2
k2=√2m|E|ℏ2=βR=0.98532.095⋅fm=1fm
k1=Xk2=(3.931)(0.231fm)=0.91fm=√2m(V−|E|)ℏ2
V0=36MeV
- Spin and Parity
- (Iπ)
66-78 pages
The shrodinger equation for this scattering:
- −ℏ22m∇2ψ+∇ψ=Eψ
In spherical coordinates this may be written as:
- Let ψ=Ul(r)Ylm(θ,ϕ)r
- −ℏ22m∂2Ul(r)∂r2+l(l+1)ℏ2mUl(r)r2+VUl(r)=EUl(r)
or
- −ℏ22m∂2Ul(r)∂r2+(V+l(l+1)ℏ22m1r2)Ul(r)=EUl(r)
General solution:
- Ul(r)r=AlJl(kr)+BlNl(kr)
where
- Jl(kr) = Bessel function
- Nl(kr) = Neiman function
1.) Distant scattering: r is large such that neutron "glances" off.
- Jl(kr)≈sin(kr−lπ/2)kr
- Nl(kr)≈−cos(kr−lπ/2)kr
- ⟹ Ul(r)r=Alsin(kr−lπ2)−Blcos(kr−lπ2)kr
- ψI(r)r=AlIsin(kIr−lπ2)kIr
- kI=√2m(V+E)ℏ2
- UI(r=0) = finite, no cosine term.
- UII(r)r=AlIIsin(kIIr−lπ/2)kIIr−BlIIcos(kIIr−lπ/2)kIIr
- kII=√2mEℏ2
Normalizing and simplifying UII(r)
- UII(r)r=√AlII2+BlII2[AlII√Alπ2+BlII2sin(kIIr−lπ/2)kIIr−BlII√AlII2+BlII2cos(kIIr−lπ/2)kIIr]
- cos(δl)=AlII√AlII2+BlII2
- sin(δl)=BlII√AlII2+BlII2
⟹
- UII(r)r=√AlII2+BlII2kIIr{cos(δl)sin(kIIr−lπ/2)+sin(δl)cos(kIIr−lπ/2)}
+/−cosAsinB+sinAcosB=sin(A+/−B)
- UII(r)r=√AlII2+BlII2kIIrsin(kIIr−lπ/2+δl)
- =Clsin(kIIr−lπ/2+δl)kIIr
AlII and Cl are found by applying Boundary conditions:
- ψI(r=R)=ψII(r=R)
- ∂ψI∂r∣r=R=∂ψII∂r∣r=R
- Example
- l=0 special case
- ψ=Ul(r)rYlm(θ,ϕ) ⟹ ψl=0=U(r)r
- UI(r)r=AIsin(kIr−0π/2)kIr
- kI2=2m(V+E)ℏ2
- UII(r)r=Csin(kIIr−0π/2+δ0)kIIr
- k2II=2mEℏ2
Apply Boundary Conditions:
- UI(r=R)=UII(r=R)
- AIsin(kIR)=Csin(kIIR+δ0)
- ∂ψI∂r∣r=R=∂ψII∂r∣r=R
- AIkIcos(kIR)=CkIIcos(kIIR+δ)
kI, kII and R are known. δ is unknown.
- \frac{U_I (R)}{ \frac{\partial U_I (r)}{\partial r} } = \frac{U_{II} (R)}{ \frac{\partial U_{II] (r)}{\partial r} }
⟹
- kIcot(kIR)=kIIcot(kIIR+δ)
- k2II=2mEℏ2
- k2II=2mEℏ2
If V=0 ⟹ kI=kII ⟹ δ=0:
Free neutron; No target; No phase shift.
image70_1
If V>0 ⟹ kI>kII:
image70
If V<0 ⟹ kI<kII ⟹ δ<0: E>0; Neutron not bound.
If you measure the phase shift you can determine "sign" of V.
Cross-section:dσdΩ= differential X-section = \frac{#scattered/ solid-angle}{#in / Area} [m^2]
- =probability of scattering into the solid angle (dΩ)
- σ=∫(dσdΩ)dΩ= probability of scattering in any direction.
Letj \equiv \frac{#particles}{area}
j_{scattered} = \frac{#Nucleons scattered}{area}
From Q.M. j=ℏ2mi(ψ∗∂ψ∂X−ψ∂ψ∗∂X)= particle current density
This comes from the continuity equation
- ∂\ro∂t+→∇⋅→J=0
Time dependent Shrodinger equation \Longrightarrow
- ∂ψ∂t=−iℏHψ
- ∂ψ∗∂t=iℏHψ∗
∂∂tψ∗ψ= time derivative of the particle density
- ψ∗∂ψ∂t+ψ∂ψ∗∂t
- ψ∗(−iHℏψ)+ψ(iHℏψ∗)
- ∂ψ∗ψ∂t+iℏ[ψ∗Hψ−ψHψ∗]=0
If free particle H=p22m=−ℏ22m∂2∂X2
- Cross-section
- ∂ψ∗ψ∂t+iℏ[ψ∗(−ℏ22m)∂2ψ∂X2−ψ(−ℏ22m)∂2ψ∂X2]=0
- ∂ψ∗ψ∂t−iℏ2m[∂∂X(ψ∗∂ψ∂X−ψ∂ψ∗∂X)]=0
Check: ∂∂X(ψ∗∂ψ∂X−ψ∂ψ∗∂X)=∂ψ∗∂X∂ψ∂X+ψ∗∂2ψ∂X2−∂ψ∂X∂ψ∗∂X−ψ∂2ψ∗∂X2