Difference between revisions of "TF DerivationOfCoulombForce"

From New IAC Wiki
Jump to navigation Jump to search
Line 480: Line 480:
 
:::<math>\frac{\partial \psi^* \psi}{\partial t} + \frac{i}{\hbar} [ \psi^* (- \frac{\hbar^2}{2m}) \frac{\partial^2 \psi}{\partial X^2} - \psi (-\frac{\hbar^2}{2m})\frac{\partial^2 \psi}{\partial X^2} ] = 0</math>
 
:::<math>\frac{\partial \psi^* \psi}{\partial t} + \frac{i}{\hbar} [ \psi^* (- \frac{\hbar^2}{2m}) \frac{\partial^2 \psi}{\partial X^2} - \psi (-\frac{\hbar^2}{2m})\frac{\partial^2 \psi}{\partial X^2} ] = 0</math>
  
:::<math><math>\frac{\partial \psi^* \psi}{\partial t} - \frac{i\hbar}{2m} [ \frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) ] = 0</math>
+
:::<math>\frac{\partial \psi^* \psi}{\partial t} - \frac{i\hbar}{2m} [ \frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) ] = 0</math>
 +
 
 +
Check:  <math>\frac{\partial}{\partial X} (\psi^* \frac{\partial \psi}{\partial X} - \psi \frac{\partial \psi^*}{\partial X}) = \frac{\partial \psi^*}{\partial X} \frac{\partial \psi}{\partial X} + \psi^*\frac{\partial^2 \psi}{\partial X^2} - \frac{\partial \psi}{\partial X} \frac{\partial \psi^*}{\partial X} - \psi \frac{\partial^2 \psi^*}{\partial X^2}</math>

Revision as of 03:05, 3 March 2009

Poisson's Equation
2ϕ(ξ)=ρϵ0=eϵ0δ(ξ)

Fourier Transform of Poisson's Equation

1(2π)3/2eikξ2ϕ(ξ)dV=1(2π)3/2eϵ0eikξδ(ξ)dV
1(2π)3/2eikξ(ϕ(ξ))dV=e(2π)3/2ϵ0(1)

Product rule for dervatives

1(2π)3/2{(eikξϕ)(eikξ)(ϕ)}dV=e(2π)3/2ϵ0(1)


Gauss' Theorem:

(eikξϕ)dV=SeikξdA


Definition of derivative:

(eikξ)(ϕ)=(ϕeik)ϕ2eikξ


Substituting

1(2π)3/2{SeikξϕdA(ϕeikξ)dV+ϕ2eikξdV}=e(2π)3/2ϵ0


Gauss' Low:

(ϕeikξ)dV=SϕeikξdA


1(2π)3/2{S{eikξϕϕeikξ}dA+ϕ2eikξdV}=e(2π)3/2ϵ0


1(2π)3/2ϕ(ik)(ik)eikξdV=e(2π)3/2ϵ0


k21(2π)3/2ϕ(ξ)eikξdVxi=e(2π)3/2ϵ0

k2ϕ(k)=e(2π)3/2ϵ0

1.) Coulomb ϕ(k)=e(2π)3/2ϵ01k2 = potential in "k"(momentum) space

To find the potential in "coordinate" (ξ) space just inverse transform

ϕ(ξ)=1(2π)3/2e+ikξϕ(k)dVk
=1(2π)3/2eikξe2π)3/2ϵ01k2dVk
=e(2π)3ϵ0eikξk2dVk


dVk=k2sinθkdθkdϕkdk


=e(2π)3ϵ002πdϕk0πdθk0dk×k2sinθkeikξ
=e(2π)2ϵ00π0sinθkeikξcosθkk2dk

u=cosθ

du=sinθdθ


ϕ(ξ)=e4π2ϵ00infty11eikξuk2duk2dk
=e4π2ϵ00inftyeikξeikξikξdk
=e4π2ϵ01iξ(iπ)=e4π2ϵ01ξ
=\frac{e}{4 {\pi}^2 \epsilon_0} \frac{1}{|\vec{r} - \vec{r}^'|} = Coulomb potential
2) Nuclear potential

Consider the force field generated by a point source (nucleon) at location r from the origin of a coordinate system.

300px

Assume a particle of mass m is e charged to generate the field (In Coulomb force particle was m=o photon).

Definition of relativistic Energy:

E2=(mc2)2+(cp)2

In terms of Hamiltonian

d2dt2ϕ(r)=[(mc2)2+(ci)2]ϕ(r)


In a static case

[(mc2)2c222]ϕ(r)=0

[2(mc)2]ϕ(r)=0

Lets μ=mc=(140MeVc2)c6.6×1016eVs(106eVMeV)

=2.1×1023(3×108m)(1015mfm)=0.7fm(200MeVfm)=140MeV


c=(6.6×1016eVs)(3×108ms)(1015fmm)(1MeV106eV)=198MeVfm200MeVfm
μ=mc2c=mc2200MeVfm if mc2200MeV then interaction length 1fm.


With the source term

[{\nabla}^2 - {\mu}^2]\phi(\xi) = -{{\xi}_0}^' \delta(\xi)

As seen before for Coulomb force


\frac{1}{(2\pi)^{3/2}} \int e^{-ik \xi} [{\nabla}^2 - {\mu}^2] \phi (\xi) dV = -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \delta (\xi) dV
[-k^2 -{\mu}^2]\phi(\vec{k}) =  -\frac{{{\xi}_0}^'}{(2\pi)^{3/2}}
\Longrightarrow \phi(\vec{k}) = \frac{{{\xi}_0}^'}{(2\pi)^{3/2}} \frac{1}{k^2 + {\mu}^2}
\phi(\vec{\xi}) = \frac{1}{(2 \pi)^{3/2}} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{(2 \pi)^{3/2}} \frac{{{\xi}_0}^'}{k^2 + {\mu}^2} dV_k : inverse fourier transform
= \frac{{{\xi}_0}^'}{(2\pi)^3} \int \frac{e^{+i \vec{k} \cdot \vec{\xi}}}{k^2 + {\mu}^2} k^2 sin\theta d\theta d\phi dk
\phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \int \frac{e^{i\vec{k} \cdot \vec{\xi}}}{(k^2 + {\mu}^2)} k^2 d[cos\theta] (2\pi) dk
= \frac{{{\xi}_0}^'}{(2\pi)^2} {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} {{\int}_0}^{\pi} e^{ik\xi cos\theta} d[cos\theta] dk
= \frac{{{\xi}_0}^'}{(2\pi)^2}  {{\int}_0}^{\infty} \frac{k^2}{k^2 + {\mu}^2} dk \frac{e^{ik\xi \mu}}{ik\xi} {|_{-1}}^1
=  \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{i\xi} {{\int}_0}^{\infty} \frac{k}{k^2 + {\mu}^2} (e^{ik\xi} - e^{-ik\xi})
=  \frac{{{\xi}_0}^'}{(2\pi)^2}\frac{1}{i\xi} {{\int}_{-\infty}}^{\infty} \frac{e^{ik\xi}kdk}{k^2 + {\mu}^2}
eikξkdkk+iμkiμ=iπeμξ
\phi(\xi) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu \xi}}{\xi}

\phi(\vec{r}) = \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{1}{|\vec{r} - {\vec{r}}^'|}
{\phi}_{EM}(\vec{r}) = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}

Coupling constants are:

??????????????????????????????????
??????????????????????????????????


Summary

There are now at least two forces which act between Nucleons, the Coulomb force and the Nucleon force. We can write the force in terms of a potential

V_{EM} = \frac{e}{4\pi \epsilon_0} \frac{1}{|\vec{r} - {\vec{r}}^'|}


V_{Nuc} =  \frac{{{\xi}_0}^'}{(2\pi)^2} \frac{e^{-\mu |\vec{r} - {\vec{r}}^'|}}{|\vec{r} - {\vec{r}}^'|}
V_{tot} = \frac{1}{4\pi} \left \{ \frac{Q_1 Q_2}{\epsilon_0 e } - \frac{{\xi}_0}{\pi} e^{-\mu |\vec{r} - {\vec{r}}^'|} \right \} \frac{1}{|\vec{r} - {\vec{r}}^'|}
μ=mπc=1R(1.5fm)1
C.) Deuteron
(H12), (D2), (d) = a proton-neutron bound state

General properties: L=0 - orbital angular momentum

Jπ=1+ - (Nuclear spin)

r2=2.095fm - Mean radius.

B.E.=2.2246MeV - Binding energy.

Non-relativistic Schrodiger solution
B.E.=2.2246MeV<<1.8GeVm(H2)c2

weakly bound system

Instead of Dirac equation try 3-D Square Well Schrod. Eq. approximation for Deuteron wavefunction.

350px

V(r)=V0 when rR=2.2

V(r)=0 r>R

Assume ψ=Y00V(r)r : No angular dependence, only radial dependence.

Schrod. Equation

22m2ψ+V(r)ψ=Eψ

2=1r2r(r2r)+1r2sinθθ(sinθθ)+1r2sin2θ2ϕ2


22mY001r2rr2(U(r)/r)r+1r2sinθU(r)r(θsinθY00θ)

+U(r)r3sin2θ2ϕ2Y00+V(r)Y00U(r)r=EU(r)r


1r2rr2rU(r)r=1r2rr2[1rU(r)rU(r)r2]

=1r2[U(r)r+r2U(r)r22rU(r)r2r2r2U(r)rr2U(r)2r3]

=1r2U(r)r2+1r2U(r)r1r2U(r)r2U(r)r2+2U(r)r2

=1r2U(r)r2


U(r)r3sinθ(θsinθθ)Y00=U(r)r3sinθl(l+1)Y00

=U(r)r3sinθ[θsinθθ]14π=0


U(r)r3sinθ2ϕ2Y00=0 : Y00=14π

Schrod. Equation becomes

22mY00r2U(r)r2+V(r)Y00U(r)r=EU(r)Y00r


for rR : V(r)=V0


2U(r)r2+2m2(E+V)U(r)=0

for r>R : V(r)=0


2U(r)r2+2m2EU(r)=0


File:ImageTF 1.jpg

ψI

2UI(r)r2+k12U(r)=0 : k12=2m2(E+V)

UI(r)=Asin(k1r)+Bcos(k1r) : spring simple harmonic motion


Boundary condition:

ψI(r=0)=0 B=0
ψII

2UII(r)r2+k22U(r)=0 : k22=2m2E<0

E<0 for bound states. Taking out " - " sign in k22

2UII(r)r2k22U(r)=0

New definition of k22 : k22=2m2|E|

UII(r)=Cek2r+Dek2r


Boundary condition:UII(r=) - finite D=0


UI(r)=Asin(k1r)

UII(r)=Cek2r

Bounding condition

UI(r=R)=UII(r=R)

UIrr=R=UIIrr=R

Asin(k1R)=Cek2R

Ak1cos(k1R)=Ck2ek2R

Dividing two equations

tan(k1R)k1=1k2

tan(k1R)=k1k2=2m2(V+E)2m2|E|

But E<0 for bound states

tan(k1R)=(V|E|)|E|=X=k1k2


k1R=Xk2R=Xβ

X=tan(βX)

Solving the ??? 59 eqution:

X=tan(βX)

βX=k1R β=k1XR=k2R=2m|E|2R

m = reduced mass

β=2(938.982MeV)|E|(c)2R :


:=(938.98)MeV(2.224MeV)(197.3MeVfm)2R
=(938.98)(2.224)MeV2(197.3)2MeV2fm2(2.095fm)
=0.4853

|E|=|2.224MeV|

Find X s.t. X=tan(0.4853X)

Using ?? 59 of graphing X=3.91=k1k2

k2=2m|E|2=βR=0.98532.095fm=1fm

k1=Xk2=(3.931)(0.231fm)=0.91fm=2m(V|E|)2

V0=36MeV

Spin and Parity
(Iπ)


66-78 pages

The shrodinger equation for this scattering:

22m2ψ+ψ=Eψ

In spherical coordinates this may be written as:

Let ψ=Ul(r)Ylm(θ,ϕ)r
22m2Ul(r)r2+l(l+1)2mUl(r)r2+VUl(r)=EUl(r)

or

22m2Ul(r)r2+(V+l(l+1)22m1r2)Ul(r)=EUl(r)

General solution:

Ul(r)r=AlJl(kr)+BlNl(kr)

where

Jl(kr) = Bessel function
Nl(kr) = Neiman function

1.) Distant scattering: r is large such that neutron "glances" off.

Jl(kr)sin(krlπ/2)kr
Nl(kr)cos(krlπ/2)kr
Ul(r)r=Alsin(krlπ2)Blcos(krlπ2)kr


ψI(r)r=AlIsin(kIrlπ2)kIr
kI=2m(V+E)2
UI(r=0) = finite, no cosine term.
UII(r)r=AlIIsin(kIIrlπ/2)kIIrBlIIcos(kIIrlπ/2)kIIr
kII=2mE2

Normalizing and simplifying UII(r)

UII(r)r=AlII2+BlII2[AlIIAlπ2+BlII2sin(kIIrlπ/2)kIIrBlIIAlII2+BlII2cos(kIIrlπ/2)kIIr]


cos(δl)=AlIIAlII2+BlII2
sin(δl)=BlIIAlII2+BlII2

UII(r)r=AlII2+BlII2kIIr{cos(δl)sin(kIIrlπ/2)+sin(δl)cos(kIIrlπ/2)}

+/cosAsinB+sinAcosB=sin(A+/B)

UII(r)r=AlII2+BlII2kIIrsin(kIIrlπ/2+δl)
=Clsin(kIIrlπ/2+δl)kIIr

AlII and Cl are found by applying Boundary conditions:

ψI(r=R)=ψII(r=R)
ψIrr=R=ψIIrr=R
Example
l=0 special case
ψ=Ul(r)rYlm(θ,ϕ) ψl=0=U(r)r
UI(r)r=AIsin(kIr0π/2)kIr
kI2=2m(V+E)2
UII(r)r=Csin(kIIr0π/2+δ0)kIIr
k2II=2mE2


Apply Boundary Conditions:

UI(r=R)=UII(r=R)
AIsin(kIR)=Csin(kIIR+δ0)
ψIrr=R=ψIIrr=R
AIkIcos(kIR)=CkIIcos(kIIR+δ)

kI, kII and R are known. δ is unknown.

\frac{U_I (R)}{ \frac{\partial U_I (r)}{\partial r} } = \frac{U_{II} (R)}{ \frac{\partial U_{II] (r)}{\partial r} }

kIcot(kIR)=kIIcot(kIIR+δ)
k2II=2mE2
k2II=2mE2

If V=0 kI=kII δ=0: Free neutron; No target; No phase shift.

image70_1


If V>0 kI>kII:

image70

If V<0 kI<kII δ<0: E>0; Neutron not bound.

If you measure the phase shift you can determine "sign" of V.

Cross-section:dσdΩ= differential X-section = \frac{#scattered/ solid-angle}{#in / Area} [m^2]

=probability of scattering into the solid angle (dΩ)
σ=(dσdΩ)dΩ= probability of scattering in any direction.

Letj \equiv \frac{#particles}{area}

j_{scattered} = \frac{#Nucleons scattered}{area}

From Q.M. j=2mi(ψψXψψX)= particle current density

This comes from the continuity equation


\rot+J=0


Time dependent Shrodinger equation \Longrightarrow

ψt=iHψ
ψt=iHψ

tψψ= time derivative of the particle density

ψψt+ψψt
ψ(iHψ)+ψ(iHψ)
ψψt+i[ψHψψHψ]=0

If free particle H=p22m=22m2X2

Cross-section
ψψt+i[ψ(22m)2ψX2ψ(22m)2ψX2]=0
ψψti2m[X(ψψXψψX)]=0

Check: X(ψψXψψX)=ψXψX+ψ2ψX2ψXψXψ2ψX2