Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
Substituting | Substituting | ||
− | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi \cdot d\vec{A} - \int \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi \cdot d\vec{A} - \int \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
Line 32: | Line 32: | ||
− | <math>\frac{1}{(2 \pi)^{3/2} } \left \{\int \left \{ e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \} \cdot d\vec{A} + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>\frac{1}{(2 \pi)^{3/2} } \left \{\int \left \{ e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \} \cdot d\vec{A} + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
− | <math>\frac{1}{(2 \pi)^{3/2} } \int \phi (-ik) (-ik) e^{-i \vec{k} \cdot \vec{\xi}} dV = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>\frac{1}{(2 \pi)^{3/2} } \int \phi (-ik) (-ik) e^{-i \vec{k} \cdot \vec{\xi}} dV = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
− | <math>-k^2 \frac{1}{(2 \pi)^{3/2} } \int \phi(\xi) e^{-i \vec{k} \cdot \vec{\xi}} dV_{xi} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>-k^2 \frac{1}{(2 \pi)^{3/2} } \int \phi(\xi) e^{-i \vec{k} \cdot \vec{\xi}} dV_{xi} = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
− | <math>-k^2 \phi(k) = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>-k^2 \phi(k) = \frac{-e}{(2 \pi)^{3/2} \epsilon_0}</math> |
− | 1.) Coulomb <math>\phi(k) = \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2}</math> = potential in "k"(momentum) space | + | 1.) Coulomb <math>\phi(k) = \frac{e}{(2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2}</math> = potential in "k"(momentum) space |
To find the potential in "coordinate" <math>(\xi)</math> space just inverse transform | To find the potential in "coordinate" <math>(\xi)</math> space just inverse transform | ||
− | :<math>\phi (\xi) = \frac{1}{2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> | + | :<math>\phi (\xi) = \frac{1}{(2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> |
− | :::<math>= \frac{1}{2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | + | :::<math>= \frac{1}{(2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> |
− | :::<math>= \frac{e}{2 \pi)^{3/2} \epsilon_0} \int \frac{e^{i \vec{k} \cdot \vec{\xi}}}{k^2} dV_k</math> | + | :::<math>= \frac{e}{(2 \pi)^{3/2} \epsilon_0} \int \frac{e^{i \vec{k} \cdot \vec{\xi}}}{k^2} dV_k</math> |
Line 55: | Line 55: | ||
− | :::<math>=\frac{e}{2 \pi)^{3/2} \epsilon_0} {{\int}_0}^{2\pi} d{\phi}_k {{\int}_0}^{\pi} d{\theta}_k {{\int}_0}^{\infty} dk k^2 sin{\theta}_k e^{i \vec{k} \cdot \vec{\xi}}</math> | + | :::<math>=\frac{e}{(2 \pi)^{3/2} \epsilon_0} {{\int}_0}^{2\pi} d{\phi}_k {{\int}_0}^{\pi} d{\theta}_k {{\int}_0}^{\infty} dk k^2 sin{\theta}_k e^{i \vec{k} \cdot \vec{\xi}}</math> |
:::= | :::= |
Revision as of 04:29, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low:
1.) Coulomb
= potential in "k"(momentum) spaceTo find the potential in "coordinate"
space just inverse transform
- =