Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
Substituting | Substituting | ||
− | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \cdot d\vec{A} - \int \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | + | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi \cdot d\vec{A} - \int \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> |
Line 32: | Line 32: | ||
− | <math>\frac{1}{(2 \pi)^{3/2} } \left \ | + | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \}</math> |
Revision as of 03:45, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low: