Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 30: | Line 30: | ||
<math>\int \vec{\nabla}\cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV = \int \phi \vec{\nabla} e^{-i k \xi } \cdot d\vec{A}</math> | <math>\int \vec{\nabla}\cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV = \int \phi \vec{\nabla} e^{-i k \xi } \cdot d\vec{A}</math> | ||
+ | |||
+ | |||
+ | <math>\frac{1}{(2 \pi)^{3/2} } \left \( \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \)</math> |
Revision as of 03:44, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low: