Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
| Line 25: | Line 25: | ||
<math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \cdot d\vec{A} - \int \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | <math>\frac{1}{(2 \pi)^{3/2} } \left \{ \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \cdot d\vec{A} - \int \cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | ||
| + | |||
| + | |||
| + | Gauss' Low: | ||
| + | |||
| + | <math>\int \vec{\nabla}\cdot (\phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} ) dV = \int \cdot \phi \vec{\nabla} e^{-i \vec{k} \cdot d\vec{A}</math> | ||
Revision as of 03:34, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low: