Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
:<math>\frac{1}{(2 \pi)^{3/2}} \int \left \{ \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) - (\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi) \right \} dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math> | :<math>\frac{1}{(2 \pi)^{3/2}} \int \left \{ \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) - (\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi) \right \} dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math> | ||
+ | |||
+ | |||
+ | Gauss' Theorem: | ||
+ | |||
+ | :<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \Int</math> |
Revision as of 03:31, 20 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem: