Difference between revisions of "TF DerivationOfCoulombForce"

From New IAC Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
Product rule for dervatives
 
Product rule for dervatives
  
:<math>\frac{1}{(2 \pi)^{3/2}} \int \left \{ \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) - (\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi \right \} dV  = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math>
+
:<math>\frac{1}{(2 \pi)^{3/2}} \int \left \{ \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) - (\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi) \right \} dV  = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math>

Revision as of 03:25, 20 February 2009

Poisson's Equation
2ϕ(ξ)=ρϵ0=eϵ0δ(ξ)

Fourier Transform of Poisson's Equation

1(2π)3/2eikξ2ϕ(ξ)dV=1(2π)3/2eϵ0eikξδ(ξ)dV
1(2π)3/2eikξ(ϕ(ξ))dV=e(2π)3/2ϵ0(1)

Product rule for dervatives

1(2π)3/2{(eikξϕ)(eikξ)(ϕ)}dV=e(2π)3/2ϵ0(1)