Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 5: | Line 5: | ||
:<math>\frac{1}{(2 \pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \nabla^2 \phi(\vec{\xi})dV = - \frac{1}{(2 \pi)^{3/2}} \frac{e}{\epsilon_0} \int e^{-i \vec{k} \cdot \vec{\xi}}\delta(\vec{\xi}) dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math> | :<math>\frac{1}{(2 \pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \nabla^2 \phi(\vec{\xi})dV = - \frac{1}{(2 \pi)^{3/2}} \frac{e}{\epsilon_0} \int e^{-i \vec{k} \cdot \vec{\xi}}\delta(\vec{\xi}) dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math> | ||
+ | :<math>\frac{1}{(2 \pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \cdot (\vec{\nabla} \phi(\vec{\xi}))dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)</math> |
Revision as of 03:12, 20 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation