Difference between revisions of "Compton Scattering"

From New IAC Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 +
 +
 
==Analyzing Power as a Function of Compton Scattering Angle==
 
==Analyzing Power as a Function of Compton Scattering Angle==
 +
 +
The analyzing power <math></math>
  
 
[[Image:power.jpg |800px]]
 
[[Image:power.jpg |800px]]
Line 6: Line 11:
  
 
The differential cross section for Compton scattering  is given by the Klein-Nishina formula:
 
The differential cross section for Compton scattering  is given by the Klein-Nishina formula:
<math>Eγ' = \frac {} {1+ \alpha (1-cos( \theta))}
+
 
 +
<math>\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (P(E_\gamma,\theta) - P(E_\gamma,\theta)^2 \sin^2(\theta) + P(E_\gamma,\theta)^3)</math>
  
 
[[Image:cross section.jpg |800px]]
 
[[Image:cross section.jpg |800px]]
Line 12: Line 18:
 
==Energy of Scattered Photon==
 
==Energy of Scattered Photon==
 
[[Image:compton.jpg |800px]]
 
[[Image:compton.jpg |800px]]
 +
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]

Latest revision as of 06:25, 5 February 2009

Go Back


Analyzing Power as a Function of Compton Scattering Angle

The analyzing power [math][/math]

Power.jpg

Compton Scattering Differential Cross Section

The differential cross section for Compton scattering is given by the Klein-Nishina formula:

[math]\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (P(E_\gamma,\theta) - P(E_\gamma,\theta)^2 \sin^2(\theta) + P(E_\gamma,\theta)^3)[/math]

Cross section.jpg

Energy of Scattered Photon

Compton.jpg

Go Back