Difference between revisions of "Compton Scattering"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
==Analyzing Power as a Function of Compton Scattering Angle==
 
==Analyzing Power as a Function of Compton Scattering Angle==
 +
 +
The analyzing power <math>\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (P(E_\gamma,\theta) - P(E_\gamma,\theta)^2 \sin^2(\theta) + P(E_\gamma,\theta)^3)</math>
  
 
[[Image:power.jpg |800px]]
 
[[Image:power.jpg |800px]]

Revision as of 14:20, 23 July 2008

Analyzing Power as a Function of Compton Scattering Angle

The analyzing power [math]\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (P(E_\gamma,\theta) - P(E_\gamma,\theta)^2 \sin^2(\theta) + P(E_\gamma,\theta)^3)[/math]

Power.jpg

Compton Scattering Differential Cross Section

The differential cross section for Compton scattering is given by the Klein-Nishina formula:

Cross section.jpg

Energy of Scattered Photon

Compton.jpg