Difference between revisions of "HRRL Simulations"
(→Run 1) |
(→Run 1) |
||
Line 54: | Line 54: | ||
I we ran the HRRL for 1 hour at the maximum beam current of 80 mA per 100 ns pulse and 1 kHz rep rate then the dose to the ceiling would be | I we ran the HRRL for 1 hour at the maximum beam current of 80 mA per 100 ns pulse and 1 kHz rep rate then the dose to the ceiling would be | ||
− | : <math> | + | : <math>80 mA \times 100 ns = 8 \times 10^{-9} Coul \times \frac{1000 pulses}{sec} \times \frac{3600 sec}{hr} = 0.0288 Coul/hr \times \frac {44 krad}{C} = 1.4 kRad/hr</math> |
[http://www.iac.isu.edu/mediawiki/index.php/HRRL Go back] | [http://www.iac.isu.edu/mediawiki/index.php/HRRL Go back] |
Revision as of 13:27, 11 July 2008
This document describes the simulations performed to estimate the radiological background in the event that a 1 nA electron current from the HRRL enters the experimental cell.
Radiation monitors: Ludlum Model 45-8.
Low energy gamma cutoff = 60 keV
Tungsten SImulation
I created a world volume filled with Air to represent the experimental cell.
I created a 2mm thick tungsten target that is 30 cm x 30 cm in area.
The image below shows several electrons hitting the tungsten foil, then scattering in air. The red lines are electrons and the green ones are photons.
Run 1
I then ran 1 million events in which an incident 7 MeV electron hit the 2 mm thick Tungsten with the physics processes
if (particleName == "gamma") { // gamma pmanager->AddDiscreteProcess(new G4PhotoElectricEffect); pmanager->AddDiscreteProcess(new G4ComptonScattering); pmanager->AddDiscreteProcess(new G4GammaConversion); } else if (particleName == "e-") { //electron pmanager->AddProcess(new G4MultipleScattering,-1, 1,1); pmanager->AddProcess(new G4eIonisation, -1, 2,2); pmanager->AddProcess(new G4eBremsstrahlung, -1, 3,3);
I only kept event in which had a momentum component towards the ceiling
The energy distribution (in MeV) of the gammas headed towards the roof is shown below. Of the 1 million electrons incident on the 2 mm thick Tungsten target, only 70,000 gammas were headed towards the cieling. This does not mean that they hit it, they could have hit the wall.
If I sum the above distribution I see a total energy of 43,987 MeV going up from the 1 million 7 MeV electrons hitting the 2mm Tungsten target.
1 Rad =
= the amount of energy absorbed per 100 kg of materialTo calculate the worst possible case lets assume all of the radiation is absorbed by a person (there is no concrete ceiling).
Converting the energy from MeV to Joules
In terms of the energy per beam current charge we would have
I we ran the HRRL for 1 hour at the maximum beam current of 80 mA per 100 ns pulse and 1 kHz rep rate then the dose to the ceiling would be