Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
(10 intermediate revisions by the same user not shown) | |||
Line 67: | Line 67: | ||
<math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math> | <math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math> | ||
− | <math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> | + | <math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> when <math>\beta = \frac{p_0}{E_0}\rightarrow 1</math> |
+ | |||
+ | <math>P(\beta) = \frac{\beta^3\delta^3}{T^4_0}exp[-2a(\frac{1}{\beta}-1)cos^{-1}a]\times M(\beta)</math> | ||
+ | |||
+ | <math>R(\beta)=\frac{K(\beta)}{M(\beta)}</math> | ||
+ | |||
+ | <math>M(\beta) = \frac{4}{3}+\frac{(\delta-2)(\delta-1)}{\beta^2 \delta}[1+\frac{1}{2\beta^2 \delta}ln(\frac{1-\beta}{1+\beta})]</math> | ||
+ | |||
+ | <math>K(\beta)=\frac{1}{\beta^3}[\delta - \frac{17}{2}+\frac{63}{4\delta}-\frac{25}{4\delta^2}-\frac{2}{\delta^3}-\frac{15}{8\beta \delta^3}(\delta-2)(\delta-1)ln(\frac{1-\beta}{1+\beta})]</math> | ||
+ | |||
+ | |||
+ | <math>\delta = (1-\beta^2)^{-\frac{1}{2}}</math> | ||
---- | ---- |
Latest revision as of 16:14, 10 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
Calculation of
;
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .Case B: For
we have
Calculation of
1.a
, :
- screening functions;
, for ;
, for ;
1.b
, :
2.
,
, when
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.