Difference between revisions of "Calculation of radiation yield"

From New IAC Wiki
Jump to navigation Jump to search
 
(44 intermediate revisions by the same user not shown)
Line 33: Line 33:
 
''Calculation of <math>\Phi_n(Z,E_0,k)</math>''
 
''Calculation of <math>\Phi_n(Z,E_0,k)</math>''
  
<math>\gamma(=100k/E_0EZ^{1/3}) \leq 15</math> , <math>k<k_x</math>:
+
'''1.a'''  <math>\gamma(=100k/E_0EZ^{1/3}) \leq 15</math> , <math>k<k_x</math>:
  
 
<math>\Phi_n(Z,E_0,k) = 4([1+ (\frac{E}{E_0})^2][\frac{1}{4}\phi_1(\gamma)-\frac{1}{3}lnZ - f(Z)]-\frac{2E}{3E_0}[\frac{1}{4}\phi_2(\gamma)-\frac{1}{3}lnZ-f(Z)]) </math>
 
<math>\Phi_n(Z,E_0,k) = 4([1+ (\frac{E}{E_0})^2][\frac{1}{4}\phi_1(\gamma)-\frac{1}{3}lnZ - f(Z)]-\frac{2E}{3E_0}[\frac{1}{4}\phi_2(\gamma)-\frac{1}{3}lnZ-f(Z)]) </math>
  
<math>\gamma > 15</math>, <math>k<k_x</math>:
+
<math>\phi_1(\gamma),\phi_2(\gamma) </math> - screening functions;
  
<math>\Phi_n(Z,E_0,k) = \frac{p}{p_0}(\frac{4}{3}-2EE_0(\frac{p^2+p^2_0}{p^2p^2_0})+\frac{\omega_0E}{p^3_0})</math>
+
<math>\phi_1(\gamma) = 19.24 - 4ln(\gamma + \frac{2}{\gamma+3})-0.12\gamma e^{-\frac{1}{3}\gamma}</math>
  
 +
<math>\phi_2(\gamma)=\phi_1(\gamma)-0.027-(0.8-\gamma)^2</math>, for <math>\gamma\leq0.80</math>;
 +
 +
<math>\phi_2(\gamma)=\phi_1(\gamma)</math>, for <math>\gamma > 0.80</math>;
 +
 +
 +
 +
'''1.b''' <math>\gamma > 15</math>, <math>k<k_x</math>:
 +
 +
<math>\Phi_n(Z,E_0,k) = \frac{p}{p_0}(\frac{4}{3}-2EE_0(\frac{p^2+p^2_0}{p^2p^2_0})+\frac{\omega_0E}{p^3_0}+\frac{\omega E_0}{p^3}-\frac{\omega\omega_0}{pp_0}+l[\frac{k}{2pp_0}(\omega_0(\frac{EE_0+p^2_0}{p^3_0})-\omega(\frac{EE_0+p^2}{p^3})+\frac{2kEE_0}{p^2p^2_0})+\frac{8EE_0}{3pp_0}+\frac{k^2(E^2E^2_0+p^2p^2_0)}{p^3p^3_0}])</math>
 +
 +
<math>p_0 = \sqrt{E^2_0-1}</math>
 +
 +
<math>p = \sqrt{E^2-1}</math>
 +
 +
<math>\omega_0 = ln(\frac{E_0+p_0}{E_0-p_0})</math>
 +
 +
<math>l=2ln(\frac{EE_0+pp_0-1}{k})</math>
 +
 +
'''2.''' <math>k_x \leq k \leq T_0</math>
 +
 +
<math>\Phi_n(Z,E_0,k) = \frac{\Phi_{n(1.a or 1.b)}(k_x)-\Phi_{tip}(T_0)}{k_x - T_0}(k-k_x)+\Phi_{n(1.a or 1.b)}(k_x)</math>
 +
 +
<math>\Phi_{tip} = 4\pi ae^{-\pi a}F(\zeta)P(\beta)[1-0.838aR(\beta)+0.650a^2]</math>
 +
 +
<math>F(\zeta)=[2\frac{\Gamma(\zeta)}{\Gamma(2\zeta+1)}(2a)^{\zeta-1}]^2</math>, <math>\zeta = \sqrt{1-(\frac{Z}{137})^2}</math>
 +
 +
<math>P(\beta)\rightarrow 1</math>, <math>R(\beta)\rightarrow 1</math> when <math>\beta = \frac{p_0}{E_0}\rightarrow 1</math>
 +
 +
<math>P(\beta) = \frac{\beta^3\delta^3}{T^4_0}exp[-2a(\frac{1}{\beta}-1)cos^{-1}a]\times M(\beta)</math>
 +
 +
<math>R(\beta)=\frac{K(\beta)}{M(\beta)}</math>
 +
 +
<math>M(\beta) = \frac{4}{3}+\frac{(\delta-2)(\delta-1)}{\beta^2 \delta}[1+\frac{1}{2\beta^2 \delta}ln(\frac{1-\beta}{1+\beta})]</math>
 +
 +
<math>K(\beta)=\frac{1}{\beta^3}[\delta - \frac{17}{2}+\frac{63}{4\delta}-\frac{25}{4\delta^2}-\frac{2}{\delta^3}-\frac{15}{8\beta \delta^3}(\delta-2)(\delta-1)ln(\frac{1-\beta}{1+\beta})]</math>
 +
 +
 +
<math>\delta = (1-\beta^2)^{-\frac{1}{2}}</math>
  
 
----
 
----

Latest revision as of 16:14, 10 May 2008

The number of photons per MeV per incident electron per g/cm2 of radiator (Z,A) is given by [*]:

d2ndκdt=3.495×104Aκ[Z2Φn(Z,E0,k)+ZΦe(Z,E0,k)](MeV1g1cm2),

where κ - photon kinetic energy in MeV;

E0 - incident electron total energy (in units of the electron rest mass);

k - incident photon energy (in units of the electron rest mass);


Calculation of Φe(Z,E0,k)

Φe(Z,E0,k)=CB{2[12E3E0+(EE)2][Lη]+η[1L22ρ1ρ2(12L[ρ(ρ+2)(E0+1)E01]12)2]};

E=E0k;

ρ=E0k(1+E0E21);

η=ρ/(ρ+2);

L=2ln((E01)12+[η(E0+1)12](E01)12[η(E0+1)12]);

CB=14ψ(ε)1lnZ233.798lnεlnZ23;

ε=100k/E0EZ2/3;

Case A: For ε0.88 the screening effect is negligible, ψ(ε)=19.194lnε (free electron form) and in this case CB=1.

Case B: For ε<0.88 we have ψ(ε)=19.70+4.117(0.88ε)3.806(0.88ε)2+31.84(0.88ε)358.63(0.88ε)4+40.77(0.88ε)5


Calculation of Φn(Z,E0,k)

1.a γ(=100k/E0EZ1/3)15 , k<kx:

Φn(Z,E0,k)=4([1+(EE0)2][14ϕ1(γ)13lnZf(Z)]2E3E0[14ϕ2(γ)13lnZf(Z)])

ϕ1(γ),ϕ2(γ) - screening functions;

ϕ1(γ)=19.244ln(γ+2γ+3)0.12γe13γ

ϕ2(γ)=ϕ1(γ)0.027(0.8γ)2, for γ0.80;

ϕ2(γ)=ϕ1(γ), for γ>0.80;


1.b γ>15, k<kx:

Φn(Z,E0,k)=pp0(432EE0(p2+p20p2p20)+ω0Ep30+ωE0p3ωω0pp0+l[k2pp0(ω0(EE0+p20p30)ω(EE0+p2p3)+2kEE0p2p20)+8EE03pp0+k2(E2E20+p2p20)p3p30])

p0=E201

p=E21

ω0=ln(E0+p0E0p0)

l=2ln(EE0+pp01k)

2. kxkT0

Φn(Z,E0,k)=Φn(1.aor1.b)(kx)Φtip(T0)kxT0(kkx)+Φn(1.aor1.b)(kx)

Φtip=4πaeπaF(ζ)P(β)[10.838aR(β)+0.650a2]

F(ζ)=[2Γ(ζ)Γ(2ζ+1)(2a)ζ1]2, ζ=1(Z137)2

P(β)1, R(β)1 when β=p0E01

P(β)=β3δ3T40exp[2a(1β1)cos1a]×M(β)

R(β)=K(β)M(β)

M(β)=43+(δ2)(δ1)β2δ[1+12β2δln(1β1+β)]

K(β)=1β3[δ172+634δ254δ22δ3158βδ3(δ2)(δ1)ln(1β1+β)]


δ=(1β2)12



Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.